首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the structural and optical properties of titanium dioxide (TiO2) nanopowders are studied. The TiO2 nanoparticles were synthesized by complexing sol–gel process and effect of complexing agents on transition of the anatase phase to rutile phase during the heat treatment have been investigated. In addition, we have studied the grain size of TiO2 powders and their dependence on the type of complexing agent. The analysis of the XRD patterns, FT-IR and UV–Vis spectroscopy, BET surface area and TEM images show that the synthesis of nanoparticles with acetyl acetone (AcAc) as complexing agent yielded the smallest size of nanoparticles about 22–35 nm. Our results indicate that with increasing the calcinating temperature, the size of the nanoparticles is increased and the energy gap reduced, too. Also, the optical band gap was obtained in the range of 3.4–4.1 and 3.06–3.74 eV for anatase and rutile phases, respectively.  相似文献   

2.
CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on microstructures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature.  相似文献   

3.
Triethoxysilylpropylamine-capped waterborne polyurethane/titania hybrid films were prepared by in situ method via sol-gel process of titanium n-butoxide under acidic condition. In the paper, we studied the effect of the contents of titania sol on the microstructure, mechanical property, water resistance, and optical property of the hybrid films. It was found, with introducing the content of titania, some physical properties such as tensile strength, modulus, water resistance, refractive index, heat resistance, and ultraviolet absorbance will increase. SEM and SAXS study suggested that the hybrid films had good planarization.  相似文献   

4.
The photoinduced self-cleaning and super-hydrophilic properties of titania (TiO2) coated glasses are considered to be utilized in many applications. The photocatalytic activity of titania is inherent to the glass composition and to the deposition method. Particularly sodium ions diffused to the titania film from the substrate have tremendous impact on its crystallinity. The deposition method influences surface, structure, and the density of the film. This study aims to provide new findings regarding the mechanism of crystallization of sol?Cgel synthesized titania and its thin films deposited by means of two different methods (dip-coating and spin-coating) onto the glass substrate with a high content of sodium ions (soda-lime glass) and without sodium ions (quartz glass). The main attention is devoted to Raman spectroscopy and Raman point-to-point mapping of the films. The content and the chemical state of the sodium ions were judged using the XPS. It is shown that the dip-coating method led to dense compact material. In this case the crystallization is localized in randomly distributed centers of nucleation. Contrary the spin-coated samples embodied a web-like pattern of cracks, from which the crystallization proceeds throughout the film. Additionally SEM, AFM, XRD, GDS, UV?CVIS methods were performed to support the results.  相似文献   

5.
Ordered mesoporous titania thin films were synthesized by evaporation induced self‐assembly process in the presence of Pluronic block copolymers P123 (EO20‐PO70‐EO20). The influence of several experimental parameters, including aging humidity, aging temperature, substrate properties and methods for organic templates removal, on the mesostructure of titania thin films was investigated in details. The mesoporous titania thin film supported Pt catalyst was prepared, and its methanol catalytic combustion performance was studied. The results showed that mesoporous titania thin film is an active support for catalyst. Mesoporous titania thin film supported platinum catalysts yields 70% methanol conversion at room temperature and 100% conversion at 100 °C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on microstructures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature. Supported by the National Natural Science Foundation of China (Grant Nos. 50632030 and 10474077), and the Natural Science Foundation of Shaanxi Province (Grant No. 2006E135)  相似文献   

7.
Nanocrystals of lead sulfide were grown in TiO2 (titania) thin films prepared by a sol-gel process. The synthetic procedure as well as the structural, optical, and electrical properties of the films are demonstrated. The structures and morphology of PbS nanocrystals were analyzed using HRTEM, SAED, AFM, HRSEM, XRD and EDAX elemental analysis technique. When the concentration of PbS in the titania matrix is 20 mol%, PbS NCs with a diameter of 2.0 nm are created. At a higher PbS concentration (> 40 mole%) in the titania matrix, PbS NCs and PbS clusters are created not only within the TiO2 film but also on the external surface of the TiO2 film. By increasing the PbS concentration up to 50 mol%, PbS nanocrystals of 6–8 nm in diameter are formed within the titania film and PbS clusters with a base size of about 100 nm2 and a height up to about 20 nm were self assembled on the external surface of TiO2 film. Quantum size effect and band gap energies were obtained from shifts of the absorption edge. For electrical measurements, PbS–TiO2 films were deposited on an ITO/glass substrate, and then covered with gold contact. The electrical properties of ITO/PbS NCs–TiO2/Au and ITO/PbS NCs–TiO2/PbS cluster/Au structures were studied. I–V characteristics of the one layer structure are nearly linear and symmetric, while those of the two-layer structure exhibit rectifying behavior.  相似文献   

8.
The nanocomposite of the (hydroxypropyl)cellulose–titania hybrid was prepared using the (hydroxypropyl)cellulose (HPC) and (tetra‐isopropyl)orthotitanate (TIPT) modified by the methacrylic acid (MAA) as a sol–gel precursor. The Raman investigations of the TIPT with MAA mixtures revealed that these mixtures formed an intermolecular complex determined by the non‐hydrolytic condensation of the constituents. In spite of this, the MAA/TIPT precursor can be used as a solvent for the HPC. The high viscosity of the homogenous liquid of HPC in the TIPT/MAA system was obtained and the sol–gel process under an influence of the moisture from the air could be conducted. The Raman investigations of HPC–titania hybrid showed octahedrally coordinated titania atoms [TiO6] embodied in the HPC environment. Although the chelating bond between the octahedrally coordinated titania [TiO6] and the MAA still occurred. The nanosize properties of TiO2 prepared by calcinations of HPC–titania hybrids were studied by the Raman spectroscopy, X‐ray investigations and the scanning electron microscopy (SEM). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Based on anodic aluminum oxide (AAO) templates prepared in different acidic solutions, highly ordered aligned titania nanotubes array films have been successfully prepared by the liquid phase deposition method. The effect of AAO template type on the microstructure of titania film have been studied. Using the template with a certain volume fraction of Al2O3 (less than 0.71), ordered aligned titania nanotubes were obtained, characterized with an outer diameter of 200 nm and an inner diameter of 100 nm, respectively. However, titania existed as ordered aligned nanorods with the diameter of 100 nm when the template with large volume fraction of Al2O3 (larger than 0.71) was used. TiO2 thin films calcined at 400°C for 4 h have an anatase phase and exhibit good photocatalytic activity, i.e., 75% methylene blue could be degraded under ultraviolet irradiation for 2 h.  相似文献   

10.
We report here on titania/organically modified silane hybrid materials produced by the sol-gel technique for optical waveguide applications. Acid catalyzed solutions of -glycidoxypropyltrimethoxysilane and methyltrimethoxysilane mixed with tetrapropylorthotitanate have been used as precursors for the hybrid materials. Waveguide films with a thickness about 1.3-m have been prepared on a silicon substrate by a single-coating process and low-temperature heat treatment. Atomic force microscopy (AFM), thermal gravimetric analysis (TGA), UV-visible spectroscopy (UV-VIS), and Fourier transform infrared (FTIR) spectroscopy have been used to investigate the optical and structural properties of these waveguide films. The results have shown that dense, pore-free, and highly transparent films can be obtained by low temperature heat treatment. The planar waveguide propagation loss of the hybrid films has also been measured.  相似文献   

11.
The present work describes the application of radiotracer technique for studying uptake of arsenic on titanium hydroxide, commercial titanium dioxide (TiO2) powder (anatase) and synthesized mesoporous titania beads in acidic, neutral, and alkaline conditions. Sol–gel templating method was used to prepare titania–polysaccharide composites, with different polymer contents. Mesoporous titania was obtained by heat treatment of the composite beads in a controlled environment. The synthesis process was optimized, using thermogravimetry analysis. X-ray diffraction patterns confirmed the formation of anatase pure phase titania (TiO2) at 700 °C in different environments, and scanning electron microscopy studies confirmed uniform pore size distribution. The effect of surface area, polymer content and pH on uptake of arsenic(III) and (V) on the synthesized titania beads was also investigated. Arsenic(V) was found to be retained quantitatively on the titania beads synthesized from 0.8% polymer content titania–polymer composite precursor in neutral to alkaline conditions. Details of the results obtained are discussed.  相似文献   

12.
In this study, preparation of Sn doped (0–30 mol % Sn) TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of Sn content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission SEM (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). Surface topography and surface chemical state of thin films were examined by atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the Sn dopant. The prepared Sn-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue solution under UV irradiation. The result shows that doping an appropriate amount of Sn can effectively improve the photo-catalytic activity of TiO2 thin films, and the optimum dopant amount is found to be 15 mol%. The Sn4+ dopants substituted Ti4+ in the lattice of TiO2 and increased surface oxygen vacancies and the surface hydroxyl groups. TEM results showed small increase in planar spacing (was detected by HR-TEM caused by Sn dopants in titania based crystals).  相似文献   

13.
Titania nanosheet-precipitated coatings have been prepared by treating SiO2-TiO2 gel films on glass substrates with hot water at 90°C under vibration. Longitudinal vibrations at about 6 Hz during the treatment enhanced the formation of titania nanosheet. The titania nanosheet consisted of several layers with a spacing of about 0.6 nm and was identified as hydrated titania with a lepidocrocite-type structure. The morphology of the titania nanosheet-precipitated coatings is probably achieved by lowering of the concentration of hydrolyzed titania species at the surface due to rapid water flow driven by the vibrations. The coatings were transparent in the visible range and showed high photocatalytic activity and antifogging property.  相似文献   

14.
This study is concerned with the preparation of hydrolytically active heteroligand complex [Ti(OC4H9)3.61(O2C5H7)0.39] from titanium butoxide and acetylacetone and with the gel formation kinetics in a solution of this complex upon hydrolysis and polycondensation. Single-layer and double-layer thin films of a solution of this precursor were coated on polished silicon substrates using the dip-coating method. The crystallization of nanostructured titania films during the heat treatment of these xerogel coatings was studied using various protocols; the anatase–rutile phase transition temperature was found to depend on the film thickness. The effects of the precursor solution viscosity on the film thickness and crystallite size were determined.  相似文献   

15.
Transparent films of titania/poly(dimethylsiloxane) (PDMS) hybrids were prepared by the solvent evaporation from the precursor solution prepared by the co-hydrolysis and co-condensation of titanium tetraisopropoxide and a methoxy-functionalized PDMS. The hybrid films were flexible and had high homogeneity of the composition. The organic groups of PDMS were decomposed at 400°C in air to form porous films. Though the heated films were rather brittle compared to the as-synthesized films, they were still transparent and homogeneous. The BET surface areas of the films after the heat treatment at 400°C were over 300 m2/g, while the as-synthesized hybrid films were non porous. According to the BDDT classification, the nitrogen adsorption/desorption isotherms of the calcined films were Type I, showing that the films were microporous. The titania domains were still amorphous after the heat treatment at 400°C and transformed to anatase after the heat treatment at 1,000°C.  相似文献   

16.
Poly(methylmethacrylate)/silica/titania films were prepared via a nonaqueous sol–gel route at ambient temperature, followed by spin-coating and multistep baking. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). Silicic acid and titanium(IV) chloride were used as the precursors of the inorganic component. FTIR results indicated the successful bonding between TiO2 and SiO2. TEM images suggested the silica/titania particles were well dispersed in the Poly(methyl methacrylate) (PMMA) matrix with the particles size smaller than 40 nm in our study. The refractive index and extinction coefficient were also studied. The refractive index of the hybrid increased with increasing the titania content, and the hybrid films showed high optical transparency in visible region.  相似文献   

17.
A process to prepare nanocrystals-dispersed thin films at low temperatures using a hot water treatment of the gel films, and application of these nanocomposite thin films were demonstrated. When amorphous Al2O3 gel films were immersed in a hot water, we found that boehmite nanocrystals were formed on the surface of the films. In the hot water treatment of Al2O3-ZnO amorphous films, Zn-Al layered double hydroxide (LDH) was found to be formed on the films. When the SiO2-TiO2 gel films containing poly(ethylene glycol) were treated in a hot water, anatase nanocrystals were formed on the surface and inside of the films, and for the gel films without an organic polymer, the anatase nanocrystals were formed only on the surface of the films. In the hot water treatment of SiO2-TiO2 gel films under a vibration, titania nanosheets were found to be precipitated, instead of anatase nanocrysltals. Since formation of nanocrystals on the substrates using a hot water treatment is very mild conditions as the precipitation of crystals, we believe this process will open new application fields of nanocystals-dispersed thin films.  相似文献   

18.
Visible-light-activated C-modified anatase titania films have been synthesized from TiCl4 and carbonic ink by using the sol–gel route. The synthesized photocatalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The modifying carbon not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared films into visible region. The results of visible-light-induced degradation of methyl orange (MO) show that the C-modified titania films exhibits much higher photocatalytic activities than that of pure titania film prepared at the same conditions.  相似文献   

19.
Crystallization Behavior of SiO2-TiO2 Sol-Gel Thin Films   总被引:1,自引:0,他引:1  
The aim of this work was to investigate the crystallization behavior of thin films of SiO2−TiO2 made by the sol-gel process as function of the TiO2 content and the temperature and time of heat treatment. Precursor solutions were prepared by hydrolysis of TEOS (tetraethoxysilane) and TPOT (titaniums tetraisopropoxide). Multilayer films were spun on single crystal silicon wafers. The compositions studied were (on a molar percentage basis) 20TiO2−80SiO2, 30TiO2−70SiO2, 40TiO2−60SiO2 and pure TiO2. The films were heat treated at different temperatures between 300°C and 1200°C, for different periods of time (30 s-90 h). The crystallization kinetics were followed by micro-Raman spectrometry. Grazing incidence X-ray diffraction showed that the films crystallized into one or both of two crystalline phase of TiO2: anatase and rutile (for pure TiO2 only). The volume fractions of the crystalline phase varied from very low values (<1%), up to 100%, for a TiO2 sample heat treated at 800°C for 8 hours. The results show that the volume fraction of crystalline phase is strongly influenced by the heat treatment temperature and also, to a smaller extent, by the heat treatment time. The most important parameter, however, is the composition of the films: the higher their TiO2 concentration, the lower is the crystallization temperature and the larger is the crystallized fraction.  相似文献   

20.
Inks of titanium diisopropoxide bisacetylacetonate ([(CH3)2CHO]2Ti(C5H7O2)2) are suitable for the fabrication of photonic bandgap materials by direct ink writing (DIW). Using this method we are able to obtain micro-periodic titania (TiO2) structures with high refractive index by calcining the structures built with those inks. Calcining at high temperatures causes titania grain growth and surface roughness of the structure, which has an influence over its optical properties. In order to inhibit the grain growth of titania nanocrystals when the structures are calcined, we have synthesized using the sol–gel technique titanium diisopropoxide bisacetylacetonate inks doped with Cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) and Zirconyl nitrate hydrate (ZrO(NO3)2·xH2O). The grain growth process of titania powders derived from the calcined doped sol–gel inks during various heat-treatment programs has been investigated by the X-ray line-broadening analysis. It was demonstrated how the dopants reduce the grain growth of the rutile phase after heat treatment. The influence of the dopants on the rheological behaviour of doped inks were studied and compared with the undoped. The flow and oscillation curves as a function of time demonstrate that doped inks have the same rheological behaviour than undoped inks. Thermogravimetric analysis also proves that doped inks keep the same mass loss after calcination than undoped inks. These results show how doped inks can be applied for DIW in the same conditions than undoped inks with a significant reduction of titania grain growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号