首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The spectral gradient method is a nonmonotone gradient method for large-scale unconstrained minimization. We strengthen the algorithm by modifications which globalize the method and present strategies to apply preconditioning techniques. The modified algorithm replaces a condition of uniform positive definitness of the preconditioning matrices, with mild conditions on the search directions. The result is a robust algorithm which is effective on very large problems. Encouraging numerical experiments are presented for a variety of standard test problems, for solving nonlinear Poisson-type equations, an also for finding molecular conformations by distance geometry.  相似文献   

2.
Anstreicher has proposed a variant of Karmarkar's projective algorithm that handles standard-form linear programming problems nicely. We suggest modifications to his method that we suspect will lead to better search directions and a more useful algorithm. Much of the analysis depends on a two-constraint linear programming problem that is a relaxation of the scaled original problem.Research supported in part by NSF Grant ECS-8602534 and ONR Contract N00014-87-K-0212.  相似文献   

3.
In this paper, we propose an infeasible-interior-point algorithm for linear programning based on the affine scaling algorithm by Dikin. The search direction of the algorithm is composed of two directions, one for satisfying feasibility and the other for aiming at optimality. Both directions are affine scaling directions of certain linear programming problems. Global convergence of the algorithm is proved under a reasonable nondegeneracy assumption. A summary of analogous global convergence results without any nondegeneracy assumption obtained in [17] is also given.  相似文献   

4.
Interior–point algorithms are among the most efficient techniques for solving complementarity problems. In this paper, a procedure for globalizing interior–point algorithms by using the maximum stepsize is introduced. The algorithm combines exact or inexact interior–point and projected–gradient search techniques and employs a line–search procedure for the natural merit function associated with the complementarity problem. For linear problems, the maximum stepsize is shown to be acceptable if the Newton interior–point search direction is employed. Complementarity and optimization problems are discussed, for which the algorithm is able to process by either finding a solution or showing that no solution exists. A modification of the algorithm for dealing with infeasible linear complementarity problems is introduced which, in practice, employs only interior–point search directions. Computational experiments on the solution of complementarity problems and convex programming problems by the new algorithm are included.  相似文献   

5.
We suggested some modifications to the controlled random search (CRS) algorithm for global optimization. We introduce new trial point generation schemes in CRS, in particular, point generation schemes using linear interpolation and mutation. Central to our modifications is the probabilistic adaptation of point generation schemes within the CRS algorithm.A numerical study is carried out using a set of 50 test problems many of which are inspired by practical applications. Numerical experiments indicate that the resulting algorithms are considerably better than the previous versions. Thus, they offer a reasonable alternative to many currently available stochastic algorithms, especially for problems requiring direct search type methods.  相似文献   

6.
《Optimization》2012,61(2):137-150
An algorithm for addressing multiple objective linear programming (MOLP) problems is presented. The algorithm modifies the path-following primal-dual algorithm to MOLP problems by using the single objective algorithm to generate interior search directions and later combine them to derive a single direction along which to step to the next iterate. Combining the different interior search directions is done by interacting with a Decision Maker (DM) to obtain locally-relevant preference information for the value vectors along these directions. This preference information is then used to derive an approximation to the gradient of an implicity-known utility function, and using a projection of this gradient provides a direction gradient of an implicitly-known utility function, and using a projection of this gradient provides a direction vector along which we step to the next iterate. At each iteration the algorithm also generates boundary points that aid in deriving the combined search direction. We refer to these boundary points, generated sequentially during the process, as anchor points that serve as candidate solutions at which to terminate the iterative process.  相似文献   

7.
In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.  相似文献   

8.
Ant colony system is a well known metaheuristic framework, and many efficient algorithms for different combinatorial optimization problems have been derived from this general framework. In this paper some directions for improving the original framework when a strong local search routine is available, are identified. In particular, some modifications able to speed up the method and make it competitive on large problem instances, on which the original framework tends to be weaker, are described. The resulting framework, called Enhanced Ant Colony System is tested on three well-known combinatorial optimization problems arising in the transportation field. Many new best known solutions are retrieved for the benchmarks available for these optimization problems.  相似文献   

9.
In this paper, a new superlinearly convergent algorithm is presented for optimization problems with general nonlineer equality and inequality Constraints, Comparing with other methods for these problems, the algorithm has two main advantages. First, it doesn‘t solve anyquadratic programming (QP), and its search directions are determined by the generalized projection technique and the solutions of two systems of linear equations. Second, the sequential points generated by the algoritbh satisfy all inequity constraints and its step-length is computed by the straight line search,The algorithm is proved to possesa global and auperlinear convergence.  相似文献   

10.
A new adaptive subspace minimization three-term conjugate gradient algorithm with nonmonotone line search is introduced and analyzed in this paper.The search directions are computed by minimizing a quadratic approximation of the objective function on special subspaces,and we also proposed an adaptive rule for choosing different searching directions at each iteration.We obtain a significant conclusion that the each choice of the search directions satisfies the sufficient descent condition.With the used nonmonotone line search,we prove that the new algorithm is globally convergent for general nonlinear functions under some mild assumptions.Numerical experiments show that the proposed algorithm is promising for the given test problem set.  相似文献   

11.
In this paper, an adaptive nonmonotone line search method for unconstrained minimization problems is proposed. At every iteration, the new algorithm selects only one of the two directions: a Newton-type direction and a negative curvature direction, to perform the line search. The nonmonotone technique is included in the backtracking line search when the Newton-type direction is the search direction. Furthermore, if the negative curvature direction is the search direction, we increase the steplength under certain conditions. The global convergence to a stationary point with second-order optimality conditions is established. Some numerical results which show the efficiency of the new algorithm are reported.   相似文献   

12.
A Manhattan search algorithm to minimize artificial neural network error function is outlined in this paper. From an existing position in Cartesian coordinate, a search vector moves in orthogonal directions to locate minimum function value. The search algorithm computes optimized step length for rapid convergence. This step is performed when consecutive search is successful in minimizing function value. The optimized step length identifies favorable descent direction to minimize function value. The search method is suitable for complex error surface where derivative information is difficult to obtain or when the error surface is nearly flat. The rate of change in function value is almost negligible near the flat surface. Most of the derivative based training algorithm faces difficulty in such scenarios. This algorithm avoids derivative information of an error function. Therefore, it is an attractive search method when derivative based algorithm faces difficulty due to complex ridges and flat valleys. In case the algorithm gets into trapped minimum, the search vector takes steps to move out of a local minimum by exploring neighborhood descent search directions. The algorithm differs from the first and second order derivative based training methods. To measure the performance of the algorithm, estimation of electric energy generation model from Fiji Islands and “L-T” letter recognition problems are solved. Bootstrap analysis shows that the algorithm’s predictive and classification abilities are high. The algorithm is reliable when solution to a problem is unknown. Therefore, the algorithm identifies benchmark solution.  相似文献   

13.
一个充分下降的有效共轭梯度法   总被引:2,自引:0,他引:2  
对于大规模无约束优化问题,本文提出了一个充分下降的共轭梯度法公式,并建立相应的算法.该算法在不依赖于任何线搜索条件下,每步迭代都能产生一个充分下降方向.若采用标准Wolfe非精确线搜索求步长,则在常规假设条件下可获得算法良好的全局收敛性最后,对算法进行大规模数值试验,并采用Dolan和More的性能图对试验效果进行刻画,结果表明该算法是有效的.  相似文献   

14.
Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics.  相似文献   

15.
结合罚函数思想和广义梯度投影技术,提出求解非线性互补约束数学规划问题的一个广义梯度投影罚算法.首先,通过扰动技术和广义互补函数,将原问题转化为序列带参数的近似的标准非线性规划;其次,利用广义梯度投影矩阵构造搜索方向的显式表达式.一个特殊的罚函数作为效益函数,而且搜索方向能保证效益函数的下降性.在适当的假设条件下算法具有全局收敛性.  相似文献   

16.
In this paper, we introduce the weighted composite search directions to develop the quadratic approximation methods. The purpose is to make fully use of the information disclosed by the former steps to construct possibly more promising directions. Firstly, we obtain these composite directions based on the properties of simplex methods and use them to construct trust region subproblems. Then, these subproblems are solved in the algorithm to find solutions of some benchmark optimization problems. The computation results show that for most tested problems, the improved quadratic approximation methods can obviously reduce the number of function evaluations compared with the existing ones. Finally, we conclude that the algorithm will perform better if the composite directions approach the previous steepest descent direction of the sub-simplex so far. We also point out the potential applications of this improved quadratic interpolation method in business intelligence systems.  相似文献   

17.
We present a new primal-dual path-following interior-point algorithm for linear complementarity problem over symmetric cones. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov–Todd step feasible interior-point algorithm based on the search directions, the complexity bound of the algorithm with the small update approach is the best available.  相似文献   

18.
Multicriteria optimization with a multiobjective golden section line search   总被引:1,自引:0,他引:1  
This work presents an algorithm for multiobjective optimization that is structured as: (i) a descent direction is calculated, within the cone of descent and feasible directions, and (ii) a multiobjective line search is conducted over such direction, with a new multiobjective golden section segment partitioning scheme that directly finds line-constrained efficient points that dominate the current one. This multiobjective line search procedure exploits the structure of the line-constrained efficient set, presenting a faster compression rate of the search segment than single-objective golden section line search. The proposed multiobjective optimization algorithm converges to points that satisfy the Kuhn-Tucker first-order necessary conditions for efficiency (the Pareto-critical points). Numerical results on two antenna design problems support the conclusion that the proposed method can solve robustly difficult nonlinear multiobjective problems defined in terms of computationally expensive black-box objective functions.  相似文献   

19.
郭洁  万中 《计算数学》2022,44(3):324-338
基于指数罚函数,对最近提出的一种求解无约束优化问题的三项共轭梯度法进行了修正,并用它求解更复杂的大规模极大极小值问题.证明了该方法生成的搜索方向对每一个光滑子问题是充分下降方向,而且与所用的线搜索规则无关.以此为基础,设计了求解大规模极大极小值问题的算法,并在合理的假设下,证明了算法的全局收敛性.数值实验表明,该算法优于文献中已有的类似算法.  相似文献   

20.
该文从统一的角度研究了多目标决策的中心方法的结构及其收敛性质.提出了形式一般的、可采用三种曲线搜索规则的中心方法之算法模型并在很弱的条件下证明了其全局收敛性以此为基础.讨论了模型中的搜索方向等参量的取法,给出了两类可实现的算法.该文结果统一和推广了已有的单(多)目标决策的中心方法.数值结果表明该算法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号