首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1rho can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1rho-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA)30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1rho-weighted image in the presence of water diffusion-exchange. The T1rho contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.  相似文献   

2.
Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields (B0 > 3T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude omega(1) and pulse duration tau. The choices of omega(1) and tau are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle theta and off-resonance pulse duration tau. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R(1rho)/R1, the ratio of the off-resonance rotating frame relaxation rate constant R(1rho) verse the laboratory frame relaxation rate constant R(1), three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time tauR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.  相似文献   

3.
Using 55.8 pb(-1) of e+e- collisions recorded at the psi(3770) resonance with the CLEO-c detector at CESR, we determine absolute hadronic branching fractions of charged and neutral D mesons using a double tag technique. Among measurements for three D0 and six D+ modes, we obtain reference branching fractions B(D0-->K-pi+)=(3.91+/-0.08+/-0.09)% and B(D+-->K-pi+pi+)=(9.5+/-0.2+/-0.3)%, where the uncertainties are statistical and systematic, respectively. Final state radiation is included in these branching fractions by allowing for additional, unobserved, photons in the final state. Using a determination of the integrated luminosity, we also extract the cross sections sigma(e+e- -->D0D0)=(3.60+/-0.07(+0.07)(-0.05)) nb and sigma(e+e- -->D+D-)=(2.79+/-0.07(+0.10)(-0.04)) nb.  相似文献   

4.
In this study, seven fruits have been tested on their magnetic properties, paramagnetic metal content and contrast enhancement in magnetic resonance imaging (MRI) of phantom and in vivo. Magnetic susceptibility was determined for the fruit pulps, as well as the contents of paramagnetic metals; iron, manganese and copper. The total content of these metals was 4.3, 8.6, 11.1, 10.9, 12.3, 8.3 and 29.3 mg/kg of fruit for plum, blueberry, apple (red), pineapple, beet, grape, blackberry, respectively, and with magnetic susceptibility of -2.29+/-0.07, -2.43+/-0.07, -2.13+/-0.07, -1.84+/-0.02, -1.75+/-0.01, -1.78+/-0.06, -2.18+/-0.07 SI, respectively. T(1)- and T(2)-weighted MR images were performed for the seven fruits and water (chi= -9.98 x 10(-3) SI) and in one subject. While there was no correlation between the magnetic susceptibility and contrast enhancement, there is a correlation with the total paramagnetic metal content determined with contrast enhancement in MRI. Thus, blackberry (Rubus spp.) contrast enhancement was the highest among the fruits in T(1)-weighted images. Furthermore, this fruit's contrast enhancement shows to be pH-dependent. These characteristics and the wide availability of the Rubus spp. suggest that it should be implemented as an oral contrast agent in images by MR to assess the function of the gastric section of the GI tract. Furthermore, it has the advantage of being a natural meal, so that it can be well tolerated by the patients and use as much as it is needed without side effects.  相似文献   

5.
Although the diffusivity and anisotropy of water has been investigated thoroughly in ordered axonal systems (i.e., nervous tissue), there have been very few studies on the directional dependence of diffusion of metabolites. In this study, the mean apparent diffusion coefficient (Trace/3 ADC) and fractional anisotropy (FA) values of the intracellular metabolites N-acetyl aspartate (NAA), creatine and phosphocreatine (tCr), choline (Cho), taurine (Tau), and glutamate and glutamine (Glx) were measured parallel and perpendicular to the length of excised frog sciatic nerve using a water suppressed, diffusion-weighted, spin-echo pulse sequence at 18.8T. The degree of anisotropy (FA) of NAA (0.41+/-0.09) was determined to be less than tCr (0.59+/-0.07) and Cho (0.61+/-0.11), which is consistent with previously reported human studies of white matter. In contrast, Glx diffusion was found to be almost isotropic with an FA value of 0.20+/-0.06. The differences of FA between the metabolites is most likely due to their differing micro-environments and could be beneficial as an indicator of compartment specific changes with disease, information not readily available with water diffusion.  相似文献   

6.
MRI measurements of water diffusion and blood perfusion are increasingly used for the evaluation of organ functionality and tissue viability (e.g., in tumors). While diffusion-weighted imaging is performed without contrast agents, measurement of blood perfusion is normally performed based on the administration of paramagnetic substances such as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Simultaneous measurements of these two parameters are often preferred. However, it may be argued that Gd-DTPA causes constriction of small blood vessels or alters hemodynamic parameters such as blood viscosity, thereby corrupting subsequent measurements of the apparent diffusion constant (ADC). The objective of the current study was to investigate the possible changes in the ADC in tumors following intravenous administration of 0.2 and 0.4 mmol/kg of Gd-DTPA in mice. The study was conducted with C3H mouse mammary carcinomas inoculated in the right foot of the animal subjects. The results were compared with findings in a sham group, demonstrating that Gd-DTPA had no significant impact on the ADC as measured in a 7-T animal system.  相似文献   

7.
Histology, including immunohistochemistry, and magnetic resonance imaging microscopy (microMRI) are complementary techniques for the analysis of brain structure. Therefore, microMRI analysis, often of formalin-fixed tissue, precedes histologic evaluation of the same experimental animal in many studies. However, the application of gadopentetate dimeglumine (Gd-DTPA), while of value for MRI studies, has an unknown effect on subsequent histology. We demonstrate here that for the mouse brain, histology with Nissl staining and immunostaining for microtubule-associated protein 2, using standard techniques for tissue preparation, are unaffected by prior perfusion of the tissue with Gd-DTPA. This conclusion was based on qualitative morphologic comparisons of stained sections, as well as quantification of mean immunofluorescence pixel intensities from Gd-treated (mean+/-S.D.=131.2+/-28.4; n=3) as compared to nontreated specimens (116.2+/-34.7; n=3, P=.7). Therefore, Gd-DTPA may be applied as a microMRI contrast agent in formalin-fixed brain tissue prior to histologic studies.  相似文献   

8.
Besides their use in contrast-enhanced proton magnetic resonance imaging (MRI), contrast agents were found to be useful as tracer molecules. Since paramagnetic ions in water have the ability to reduce the T1 of protons around them, MRI can determine the locations of Mn2+ and Gd3+ of ppm concentration in water. In opaque porous media saturated with water, MRI revealed diffusional motions of three contrast agents: MnCl2 (molecular-weight [M.W.], 126), gadolinium-diethylene-triaminepenta acetic acid (Gd-DTPA) (M.W., 743) and albumin (Gd-DTPA) (M.W., 94,000) at a diffusional displacement ratio of 9:5:2. With the aid of these contrast agents, the transport of low- to high-molecular-weight molecules in opaque water media such as living bodies can be observed using MRI.  相似文献   

9.
Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves.  相似文献   

10.
Diffusion imaging with high-b factors, high spatial resolution and cerebrospinal fluid signal suppression was performed in order to characterize the biexponential nature of the diffusion-related signal decay with b-factor in normal cortical gray and deep gray matter (GM). Integration of inversion pulses with a line scan diffusion imaging sequence resulted in 91% cerebrospinal fluid signal suppression, permitting accurate measurement of the fast diffusion coefficient in cortical GM (1.142+/-0.106 microm2/ms) and revealing a marked similarity with that found in frontal white matter (WM) (1.155+/-0.046 microm2/ms). The reversal of contrast between GM and WM at low vs high b-factors is shown to be due to a significantly faster slow diffusion coefficient in cortical GM (0.338+/-0.027 microm2/ms) than in frontal WM (0.125+/-0.014 microm2/ms). The same characteristic diffusion differences between GM and WM are observed in other brain tissue structures. The relative component size showed nonsignificant differences among all tissues investigated. Cellular architecture in GM and WM are fundamentally different and may explain the two- to threefold higher slow diffusion coefficient in GM.  相似文献   

11.
Depth and orientational dependencies of microscopic magnetic resonance imaging (MRI) T(2) and T(1ρ) sensitivities were studied in native and trypsin-degraded articular cartilage before and after being soaked in 1 mM Gd-DTPA(2-) solution. When the cartilage surface was perpendicular to B(0), a typical laminar appearance was visible in T(2)-weighted images but not in T(1ρ)-weighted images, especially when the spin-lock field was high (2 kHz). At the magic angle (55°) orientation, neither T(2)- nor T(1ρ)-weighted image had a laminar appearance. Trypsin degradation caused a depth- and orientational-dependent T(2) increase (4%-64%) and a more uniform T(1ρ) increase at a sufficiently high spin-lock field (55%-81%). The presence of the Gd ions caused both T(2) and T(1ρ) to decrease significantly in the degraded tissue (6%-38% and 44%-49%, respectively) but less notably in the native tissue (5%-10% and 16%-28%, respectively). A quantity Sensitivity was introduced that combined both the percentage change and the absolute change in the relaxation analysis. An MRI experimental protocol based on two T(1ρ) measurements (without and with the presence of the Gd ions) was proposed to be a new imaging marker for cartilage degradation.  相似文献   

12.
Magnetic resonance imaging of water has been used to visualise the migration of three paramagnetic species, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO, 1), Cu2+ ions, and copper ethylenediamine-tetraacetate (CuEDTA, 2) through cartilage on the femoral condyle of the chicken knee. The migration of copper ions is dominated by strong binding with the cartilage. In contrast, both 1 and 2 bind weakly, and their diffusion can be followed as a progressive wave through the cartilage and subsequently into the trabecular bone structure.  相似文献   

13.
Accurate quantification of the MRSI-observed regional distribution of metabolites involves relatively long processing times. This is particularly true in dealing with large amount of data that is typically acquired in multi-center clinical studies. To significantly shorten the processing time, an artificial neural network (ANN)-based approach was explored for quantifying the phase corrected (as opposed to magnitude) spectra. Specifically, in these studies radial basis function neural network (RBFNN) was used. This method was tested on simulated and normal human brain data acquired at 3T. The N-acetyl aspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate+glutamine (Glx)/Cr, and myo-inositol (mI)/Cr ratios in normal subjects were compared with the line fitting (LF) technique and jMRUI-AMARES analysis, and published values. The average NAA/Cr, Cho/Cr, Glx/Cr and mI/Cr ratios in normal controls were found to be 1.58+/-0.13, 0.9+/-0.08, 0.7+/-0.17 and 0.42+/-0.07, respectively. The corresponding ratios using the LF and jMRUI-AMARES methods were 1.6+/-0.11, 0.95+/-0.08, 0.78+/-0.18, 0.49+/-0.1 and 1.61+/-0.15, 0.78+/-0.07, 0.61+/-0.18, 0.42+/-0.13, respectively. These results agree with those published in literature. Bland-Altman analysis indicated an excellent agreement and minimal bias between the results obtained with RBFNN and other methods. The computational time for the current method was 15s compared to approximately 10 min for the LF-based analysis.  相似文献   

14.
The magnitude of the extracellular volume fraction (ECV) of tumors is of importance for the transport of macromolecular therapeutic agents from the vessel wall to the tumor cells. The aim of this study was to develop a method for measurement of tumor ECV by contrast enhanced MRI. Tumors of two human amelanotic melanoma xenograft lines (A-07 and R-18) grown intradermally in Balb/c nu/nu mice were used as model system, and muscle tissue was used as control. The renal arteries of the mice were ligated prior to i.v. administration of Gd-DTPA, and an MRI protocol for calculating Gd-DTPA concentration in tissue was followed. ECV was calculated from the Gd-DTPA concentrations in the tissue and in a plasma sample. In muscle tissue, the concentration reached a constant level after 1 min and the ECV was calculated to be 0.12 (+/- 0.01), consistent with values reported in the literature. Individual tumors showed large differences in the uptake of Gd-DTPA. The Gd-DTPA concentration in the tissue at 40 min after the Gd-DTPA administration was used to calculate tumor ECV. The ECV was found to differ significantly among regions of individual tumors and among individual tumors. The ECV ranged from 0.075 to 0.33 for A-07 tumors and from 0.016 to 0.097 for R-18 tumors. The intra- and intertumor heterogeneity in ECV was confirmed by histologic findings, showing that contrast enhanced MRI is suitable for non-invasive studies of the ECV in experimental tumors without necrosis.  相似文献   

15.
The depth-wise variation of T(2) relaxation time is known to reflect the collagen network architecture in cartilage, while the delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique is sensitive to tissue proteoglycan (PG) concentration. As the cartilage PG content varies along the tissue depth, the depth-dependent accumulation of the contrast agent may affect the inherent T(2) of cartilage in a nonconstant manner. Therefore, T(2) and dGEMRIC are typically measured in separate MRI sessions. In the present in vitro MRI study at 9.4 T, depth-wise T(2) profiles and collagenous zone thicknesses as determined from T(2) maps in the absence and presence of Gd-DTPA(2-) (T(2) and T(2Gd), respectively) were compared in samples of intact human articular cartilage (n=65). These T(2) measures were further correlated with birefringence (BF) of polarized light microscopy (PLM) to quantify the ability of MRI to predict the properties of the collagen fibril network. The reproducibility of the T(2) measurement in the current setup was also studied. Typical tri-laminar collagen network architecture was observed both with and without Gd-DTPA(2-). The inverse of BF (1/BF) correlated significantly with both T(2) and T(2Gd) (r=0.91, slope=0.56 and r=0.90, slope=0.63), respectively. The statistically significant linear correlations between zone thicknesses as determined from T(2) and T(2Gd) were r=0.55 (slope=0.49), r=0.74 (slope=0.71) and r=0.95 (slope=0.94) for superficial, middle and deep tissue zones, respectively. Reproducibility of the T(2) measurement was worst for superficial cartilage. Consistent with PLM, T(2) and T(2Gd) measurements reveal highly similar depth-dependent information on collagen network in intact human cartilage. Thus, dGEMRIC and T(2) measurements in one MRI session are feasible for intact articular cartilage in vitro.  相似文献   

16.
In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/- 0.19 and 1.20 +/- 0.36. For recovered tissue the mean values were 0.99 +/- 0.25 and 1.87 +/- 0.71, respectively. There was a significant difference between these two regions for both measures (p < 0.003 and p < 0.001, respectively). Mean absolute measures of CBF (ml/100g/min) and CBV (ml/100g) for the total infarcted territory were 33.9 +/- 9.7 and 4.2 +/- 1.9. For recovered MTT tissue, the mean values were 41.5 +/- 7.2 and 5.3 +/- 1.2, respectively. A significant difference was also found for these regions (p < 0.009 and p < 0.036, respectively). The mean measures of sensitivity, specificity, positive and negative predictive values for modeling infarct evolution for the validation patient data were 0.72 +/- 0.05, 0.97 +/- 0.02, 0.68 +/- 0.07 and 0.97 +/- 0.02. We propose that this automated strategy may allow possible guided therapeutic intervention to stroke patients and evaluation of efficacy of novel stroke compounds in clinical drug trials.  相似文献   

17.
The decay branching fractions of the three narrow Upsilon resonances to mu(+)mu(-) have been measured by analyzing about 4.3 fb(-1) e(+)e(-) data collected with the CLEO III detector. The branching fraction B(Upsilon(1S)-->mu(+)mu(-))=(2.49+/-0.02+/-0.07)% is consistent with the current world average, but B(Upsilon(2S)-->mu(+)mu(-))=(2.03+/-0.03+/-0.08)% and B(Upsilon(3S)-->mu(+)mu(-))=(2.39+/-0.07+/-0.10)% are significantly larger than prior results. These new muonic branching fractions imply a narrower total decay width for the Upsilon(2S) and Upsilon(3S) resonances and lower other branching fractions that rely on these decays in their determination.  相似文献   

18.
We present a first measurement of CP asymmetries in neutral B decays to D+D-, and updated CP asymmetry measurements in decays to D(*+)D- and D(*-)D+. We use fully reconstructed decays collected in a data sample of (232+/-3) x 10(6) gamma(4S)-->BB events in the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We determine the time-dependent asymmetry parameters to be SD(*+)(D-)=-0.54+/-0.35+/-0.07, CD(*+)(D-)=0.09+/-0.25+/-0.06, SD(*-)(D+)=-0.29+/-0.33+/-0.07, CD(*-)(D+)=0.17+/-0.24+/-0.04, SD+(D-)=-0.29+/-0.63+/-0.06, and CD+(D-)=0.11+/-0.35+/-0.06, where in each case the first error is statistical and the second error is systematic.  相似文献   

19.
We present measurements of branching fractions and CP-violating asymmetries in B0-->rho(+/-)pi(-/+) and B0-->rho-K+ decays. The results are obtained from a data sample of 88.9 x 10(6) Upsilon(4S)-->BB decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy B Factory. From a time-dependent maximum likelihood fit we measure the branching fractions B(B0-->rho(+/-)pi(-/+))=[22.6+/-1.8 (stat)+/-2.2 (syst)]x10(-6) and B(B0-->rho-K+)=(7.3 -1.2( +1.3)+/-1.3)x10(-6), and the CP-violating charge asymmetries A(rhopi)(CP)=-0.18+/-0.08+/-0.03 and A(rhoK)(CP)=0.28+/-0.17+/-0.08, the direct CP violation parameter C(rhopi)=0.36+/-0.18+/-0.04 and the mixing-induced CP violation parameter S(rhopi)=0.19+/-0.24+/-0.03, and the dilution parameters DeltaC(rhopi)=0.28 -0.19( +0.18)+/-0.04 and DeltaS(rhopi)=0.15+/-0.25+/-0.03.  相似文献   

20.
OBJECTIVE: To explore the diagnostic usefulness of high b-value diffusion magnetic resonance brain imaging ("q-space" imaging) in multiple sclerosis (MS). More specifically, we aimed at evaluating the ability of this methodology to identify tissue damage in the so-called normal-appearing white matter (NAWM). DESIGN: In this study we examined the correlation between q-space diffusion imaging and magnetic resonance spectroscopy (MRS)-based two-dimensional 1H chemical shift imaging. Eight MS patients with different degree of disease severity and seven healthy subjects were scanned in a 1.5-T magnetic resonance imaging (MRI) scanner. The MRI protocol included diffusion tensor imaging (DTI) (with bmax of 1000 s/mm2), high b-value diffusion-weighted imaging (with bmax of 14,000 s/mm2) and 2D chemical shift imaging. The high b-value data set was analyzed using the q-space methodology to produce apparent displacement and probability maps. RESULTS: We found that the q-space diffusion displacement and probability image intensities correlated well with N-acetylaspartate levels (r=.61 and .54, respectively). Furthermore, NAWM that was abnormal on MRS was also found to be abnormal using q-space diffusion imaging. In these areas, the q-space displacement values increased from 3.8+/-0.2 to 4.6+/-0.6 microm (P<.02), the q-space probability values decreased from 7.4+/-0.3 to 6.8+/-0.3 (P<.002), while DTI revealed only a small, but still significant, reduction in fractional anisotropy values from 0.40+/-0.02 to 0.37+/-0.02 (P<.05). CONCLUSION: High b-value diffusion imaging can detect tissue damage in the NAWM of MS patients. Despite the theoretical limitation of this method, in practice it provides additional information which is clinically relevant for detection of tissue damage not seen in conventional imaging techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号