首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monodisperse silver nanoparticles were synthesized by one-step reduction of silver ions in the alkaline subphase beneath vitamin E (VE) Langmuir monolayers. The monolayers and silver nanocomposite LB films were characterized by surface pressure-area (pi-A) isotherms, transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), selected area electron diffraction (SAED), Fourier transform infrared transmission spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), respectively. The results showed that the limiting area/VE molecule on different subphases varied. The phenolic groups in the VE molecules were converted to a quinone structure, and the silver ions were mainly reduced to ellipsoidal and spherical nanoparticles. The arrangement of the nanoparticles changed from sparseness to compactness with reaction time. The electron diffraction pattern indicated that the silver nanoparticles were face-centered cubic (fcc) polycrystalline. Silver nanocomposite LB films with excellent quality could be formed on different substrates, indicating that the transfer ratio of monolayer containing silver nanoparticles is close to unity. The dynamic process of reduction of silver ions by VE LB films was also studied through monitoring the conductivity of an Ag2SO4 alkaline solution.  相似文献   

2.
A wide range of analytical techniques has been used to study an Egyptian funerary mask of the Ptolemaic period (305-30 bc ). Secondary electron (SE) and back-scattering (BS) images, recorded by a scanning electron microscope (SEM), provided a detailed representation of the metallurgical techniques used to construct the gilded mask. It is confirmed, that the golden leaf used to cover the mask is the product of an antique refinery practice, so called, cementation process of naturally occurring alloy of gold and silver, namely electrum. Complementary results of SEM-electron dispersion spectroscopy (EDS) and electron probe microanalysis (EPMA)–wavelength dispersion spectroscopy (WDS) provided chemical compositions of the golden leaf as well as in the plaster base of the mask. X-ray photoemission spectroscopy (XPS) revealed the presence of Au, Ag, Si, S, Cl, Ca, and N, in addition to O and C. Relative concentration of Au/Ag at the surface has been measured by XPS to be 70% to 30%. XPS depth profiling verified silver-enrichment at the surface, as ratio of gold to silver is measured to be 80% to 20% at the depth of 15 nm. XPS chemical mapping images of gold and silver confirmed a rather inhomogeneous character of Au/Ag relative concentration at the surface. The main diffraction peaks in the X-ray diffraction (XRD) spectrum coincide with diffraction peaks of pure gold, silver metals, and magnesium calcite Mg0.03Ca0.97CO3. Whereas, Raman spectroscopy results implied the existence of Ag2S, a tarnishing compound, on the golden area of the mask.  相似文献   

3.
原位还原法制备SBA-15介孔分子筛负载纳米银颗粒   总被引:1,自引:0,他引:1  
利用一种温和的还原剂六亚甲基四胺(HMT)通过一步合成的方法制备了介孔Ag/SBA-15分子筛, 采用粉末X射线衍射(XRD)、透射电镜(TEM)和氮气吸附/脱附等手段对样品进行了表征. 样品的比表面积为525 m2/g, 平均孔径为5.4 nm. 用XPS、广角XRD和高分辨TEM等手段证实样品中的银为金属态的纳米颗粒. 研究结果表明, 以六亚甲基四胺为还原剂通过原位还原的方法能使银纳米颗粒较好地分散到介孔材料的孔道中.  相似文献   

4.
Silver nanoparticles (AgNPs) were deposited onto the monodispersed carboxylic polystyrene (CPS) spheres by an improved in situ reduction method. The size and coverage density of the AgNPs on the surface of CPS spheres could be easily tailored by tuning the concentrations of carboxylic functional groups and silver precursor. The morphologies and structures of the resulting CPS/Ag hybrid particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), UV‐Vis‐NIR spectrometer and X‐ray photoelectron spectroscopy (XPS), etc. The surface enhanced Raman scattering (SERS) performances of the resulting uniform CPS/Ag hybrid particles were investigated using 4‐aminobenzenethiol (4‐ABT) as the probe molecule. The optimized CPS/Ag hybrid particles show high enhancement factor (EF) of 2.71×107, low limit of detection (LOD) of 10?10 m and good reproducibility with relative standard deviation (RSD) of 9.64 %. The good SERS improvement properties demonstrate these hybrid particles could be employed as simple and effective substrates in the SERS spectroscopy.  相似文献   

5.
首先通过乳液聚合和浓硫酸酸化制备表面富含磺酸根的磺化聚苯乙烯(PS)微球(直径532 nm),再用其静电吸附[Ag(NH_3)_2]~+离子,最后采用聚乙烯吡咯烷酮还原表面吸附的[Ag(NH_3)_2]~+离子,得到了负载银纳米粒子的PS/AgNPs复合微球.采用扫描电子显微镜、透射电子显微镜、紫外-可见光谱、红外光谱和X射线衍射表征了PS/AgNPs复合微球,并考察了其对甲基蓝(MB)的催化性能.结果表明,Ag纳米粒子高度分散在磺化PS微球表面;该PS/AgNPs复合微球对催化转化MB有较高的催化活性,并可多次重复利用.本研究在催化降解有机污染物方面有一定的实用价值.  相似文献   

6.
This paper describes a new approach for the preparation of polyamic acid (PAA) composites containing Ag and Au nanoparticles. The composite film of PAA and metal particles were obtained upon electrodeposition of a PAA solution containing gold or silver salts with subsequent thermal treatment, while imidization to polyimide is prevented. The structural characterization of the films is provided by 1H NMR and Fourier transform infrared spectroscopy (FTIR), while the presence of metallic nanoparticles within the polymeric matrix was confirmed by scanning electron microscopy (SEM), cyclic voltammetry (CV), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). This approach utilizes the unique reactivity of PAA by preventing the cyclization of the reactive soluble intermediate into polyimides at low temperature to design polymer-assisted nanostructured materials. The ability to prevent the cyclization process should enable the design of a new class of electrode materials by use of thermal reduction and/or electrodeposition.  相似文献   

7.
Ag/TiO2 core-shell nanowires were synthesized via a one-step solution method without using a template. Interestingly, the shell morphologies can be controlled to be smooth or bristled by altering the reaction temperature. Moreover, the TiO2 shell thickness and bristle length can be tuned by changing the AgNO3 concentration. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the resultant Ag/TiO2 core-shell nanowires. Moreover, the absorption peaks of our samples are significantly red-shifted compared with those of the uncoated pure silver nanowires, indicating that interaction between the core and shell occurred. On the basis of the experimental results, we proposed a template-induced Oswald ripening mechanism to explain the formation of the Ag/TiO2 core-shell nanowires.  相似文献   

8.
Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag@PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: γ-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under γ-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe2+-EDTA-SFS) as the redox initiation pair. The resulted Ag@PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).  相似文献   

9.
采用聚苯乙烯(PS)微球作为模板剂,经溶胶-凝胶及煅烧后处理等方法制备了三维有序大孔复合材料Ag/ZnO-TiO2. 通过傅里叶-红外光谱(FT-IR)、X 射线衍射(XRD)、X 射线光电子能谱(XPS) 、N2吸附-脱附测定和扫描电子显微镜配合X 射线能量色谱仪(SEM-EDS)等测试手段对其组成、结构及形貌等进行了表征. 结果显示,经PS微球处理后的Ag/ZnO-TiO2具有锐钛矿晶型结构,其Ag以单质形式存在. 该复合材料的孔结构排列整齐有序,孔壁为介孔结构,粒子堆积致密,平均孔直径约150 nm,属于三维有序大孔材料(3DOM). 在微波辅助光催化降解甲基橙等染料的实验研究中,该复合材料表现出较好的光催化性能,其活性明显高于P25等单体以及二元体系ZnO-TiO2  相似文献   

10.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

11.
以溶胶-凝胶伴随相分离法制备的阶层多孔二氧化硅作为载体,3-氨丙基三乙氧基硅烷(APTES)为改性剂,乙醇为还原剂,在阶层多孔二氧化硅固体骨架上进行银纳米颗粒均匀负载.利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、汞压、N2吸附/脱附、X射线光电子能谱(XPS)等测试技术对银纳米颗粒负载阶层多孔二氧化硅进行了表征,探讨了APTES表面改性、乙醇还原机理以及银纳米颗粒负载块体的孔结构特征变化规律.结果表明:APTES表面改性将氨基接枝于阶层骨架上,氨基与银离子形成银氨离子,银氨离子经乙醇还原后将平均粒径约16 nm的银纳米颗粒成功负载于二氧化硅的大孔及介孔内部;负载后的阶层多孔块体的大孔骨架未受到破坏,但其比表面积由418 m2·g-1下降到254m2·g-1,两次还原负载能提高银纳米颗粒的负载量.  相似文献   

12.
In this study, glyoxal-cross-linked Iota carrageenan (IC) /poly(vinyl alcohol) PVA films were prepared and loaded with silver nanoparticles via a green approach, consisting of sweet lime juice induced in-situ reduction of Ag(I) ions to nano silver within the film matrix. The formation of silver nanoparticles was confirmed using UV–visible spectrophotometry. The Ag NPs-loaded films were also characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR). The dynamic water uptake data were interpreted by the ‘Power functional model’. The films showed fair antimicrobial action against bacteria E. Coli.  相似文献   

13.
Synthesis and characterization of silver nanoparticle/kaolinite composites   总被引:3,自引:0,他引:3  
Ag nanoparticles were synthetized in the interlamellar space of a layered kaolinite clay mineral. Disaggregation of the lamellae of non-swelling kaolinite was achieved by intercalation of dimethyl sulfoxide. The kaolinite was suspended in aqueous AgNO3 solution and, after adsorption of Ag+, the ions were reduced with NaBH4. The interlamellar space limits particle growth (dave=3.8–4.2 nm); however, larger silver particles may be formed on the exterior surface of kaolinite with dave=5.6–10.5 nm diameter. The diameter of the particles prepared in this way is depending on the initial AgNO3 concentration. The silver nanoparticles prepared were characterized by UV–vis spectroscopy, X-ray diffraction (XRD), Small angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM).  相似文献   

14.
Well-defined silver chloride nanoparticles grown on the surface of PAN nanofibre were synthesized by electrospinning technology combined with gas–solid reaction. This method can avoid the possibility of the waste of raw material as well as enhance the usage rate of AgNO3. The PAN nanofibre can be recycled easily. X-ray powder diffraction (XRD) shows the presence of crystal AgCl, X-ray photoelectron spectroscopy (XPS) confirm that there are chemical bonds and interaction between the surface modified PAN nanofibre and Ag ions. This will be propitious to prevent nanoparticles from aggregation. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) gave the direct evidence that AgCl nanoparticles have been dispersed on the surface of PAN nanofibre homogeneously.  相似文献   

15.
In this communication, colloidal silver (Ag) nanostructures were synthesized and deposited directly onto electrospun nylon 6 (N6) fibers without using surface modifier in the form of an ultrathin conformal coating layer via a hydrothermal treatment. The morphological, structural, and thermal properties of the Ag/N6 nanocomposite membranes were analyzed by field-emission scanning electron microscopy (FESEM), X-ray diffraction, X-ray photoelectron spectroscopy, and differential scanning calorimetry (DSC). FESEM imaging showed that the Ag coating on individual N6 nanofibers was continuous, uniform, and compact. A DSC study of the nanocomposites illustrated a strong interfacial adhesion of the Ag layer with N6 nanofiber surfaces via strong hydrogen bonds. A possible mechanism for hydrogen bond formation during the hydrothermal process was proposed. Further, it was found that the transition of the meta-stable γ-form into the thermodynamically more stable α-form of N6 structure was achieved; therefore, the hydrothermal process did not cause chain degradation.  相似文献   

16.
A simple and efficient approach is developed to fabricate single-crystalline CuO nanostructures through an ionic liquid assisted one-step low-temperature solid-state route.Both nanoparticles(5 nm in size)and nanorods(5-10 nm in diameter and 50-100 nm in length)of monoclinic CuO were obtained. These synthesized CuO nanostructures were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),selected area electron diffraction(SAED),X-ray photoelectron spectros- copy(XPS),energy dispersive spectroscopy(EDS)and nitrogen adsorption analysis.The morpholo- gies of the nanostructures can be controlled by tuning the amount of NaOH and ionic liquids.The growth mechanism of CuO nanostructures is investigated.  相似文献   

17.
We demonstrate that dihydroxy benzenes are excellent reducing agents and may be used to reduce silver ions to synthesize stable silver nanoparticles in air-saturated aqueous solutions. The formation of Ag nanoparticles in deaerated aqueous solution at high pH values suggests that the reduction of silver ions occurs due to oxidation of dihydroxy benzenes and probably on the surface of Ag2O. Pulse radiolysis studies show that the semi-quinone radical does not participate in the reduction of silver ions at short time scales. Nevertheless, results show that primary intermediates undergo slower transformation in the presence of dihydroxy benzenes than in their absence. This slow transformation eventually leads to the formation of silver nanoparticles. The Ag nanoparticles were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). XRD and TEM techniques showed the presence of Ag nanoparticles with an average size of 30 nm.  相似文献   

18.
于欢  杨辉  姚睿  郭兴忠 《物理化学学报》2001,30(7):1384-1390
以溶胶-凝胶伴随相分离法制备的阶层多孔二氧化硅作为载体,3-氨丙基三乙氧基硅烷(APTES)为改性剂,乙醇为还原剂,在阶层多孔二氧化硅固体骨架上进行银纳米颗粒均匀负载. 利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、汞压、N2吸附/脱附、X射线光电子能谱(XPS)等测试技术对银纳米颗粒负载阶层多孔二氧化硅进行了表征,探讨了APTES表面改性、乙醇还原机理以及银纳米颗粒负载块体的孔结构特征变化规律. 结果表明:APTES表面改性将氨基接枝于阶层骨架上,氨基与银离子形成银氨离子,银氨离子经乙醇还原后将平均粒径约16 nm的银纳米颗粒成功负载于二氧化硅的大孔及介孔内部;负载后的阶层多孔块体的大孔骨架未受到破坏,但其比表面积由418 m2·g-1下降到254 m2·g-1,两次还原负载能提高银纳米颗粒的负载量.  相似文献   

19.
采用光化学沉积法制备了一系列不同Ag含量的新型Ag/BiOX(X=Cl,Br,I)复合光催化剂,应用X射线粉末衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、光致发光(PL)谱、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征,并以420nm<λ<660nm的可见光为光源,评价了该催化剂光催化降解酸性橙II的活性,考察了不同含量的Ag沉积对BiOX样品光催化性能的影响.N2物理吸附测试结果表明,沉积银在一定程度降低了催化剂的比表面积.UV-Vis测试结果表明,Ag能产生表面等离子共振吸收,有效增强BiOCl和BiOBr对可见光的吸收能力.PL测试结果则表明,Ag能显著抑制光生电子(e-)和空穴(h+)的复合.Ag的存在大幅度提高了BiOX对染料的光催化降解活性.当负载Ag的质量分数(w)为1%-2%时,可使BiOCl、BiOBr和BiOI光催化活性分别提高了10、13和2倍.Ag/BiOX复合光催化剂具有更高催化活性的原因是复合光催化剂对可见光有很强的吸收能力,同时产生了银等离子体光催化作用和银抑制了Ag/BiOX(X=Cl,Br,I)的光生电子-空穴的复合.  相似文献   

20.
Cu、Ag、Au掺杂BiVO_4可见光催化剂的制备及性能研究   总被引:1,自引:0,他引:1  
水热法制备了币族金属(Cu、Ag和Au)掺杂的BiVO4可见光催化剂,借助X-射线衍射(XRD)、X-射线光电子能谱(XPS)、紫外-可见漫反射光谱(DRS)和扫描电子显微镜(SEM)对其进行表征.XRD分析显示所有催化剂都呈现单斜结构.XPS结果显示掺杂元素均以其稳定氧化态形式存在与催化剂表面.DRS谱中掺杂样品的吸收边界比纯BiVO4都有不同程度的红移.以甲基橙的可见光催化降解反应为探针,研究了催化剂的可见光催化性能.结果表明,经币族金属掺杂改性的催化剂催化能力比纯BiVO4有所提高.对其掺杂增强催化能力的可能原因进行了分析讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号