首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
On the basis of a brief analysis of well known normal-stress calculation methods, the necessity of improved models of prediction is elaborated. A modified form of the so-called mirror relation which meets these requirements is presented. In combination with the Carreau viscosity equation, an analytical solution is given which leads to a Carreau normal-stress coefficient equation and, thus, to a simple method of calculation. The comparison between measured normal stresses and those determined by experiments shows that the values calculated in accordance with the presented method agree well with the measured values, especially within the range of high shear rates. The parameters andK to be selected for this purpose are determined in dependence on the slope of the viscosity function 1 at high shear rates for each polymer individually, using empirical relations so that the global selection of parameters, which is common practice with other methods, is obviated. In an appendix a method for deriving the relations between material functions on the basis of operator calculation is given.Extended version of a paper read at the 2nd Symposium on Rheology of the GDR in Tabarz/Thuringia, December 7–11, 1987  相似文献   

2.
The orthogonal superposition of small and large amplitude oscillations upon steady shear flow of elastic fluids has been considered. Theoretical results, obtained by numerical methods, are based on the Leonov viscoelastic constitutive equation. Steady-state components, amplitudes and phase angles of the oscillatory components of the shear stress, the first and second normal stress differences as functions of shear rate, deformation amplitude and frequency have been calculated. These oscillatory components include the first and third harmonic of the shear stresses and the second harmonic of the normal stresses. In the case of small amplitude superposition, the effect of the steady shear flow upon the frequency-dependent storage modulus and dynamic viscosity has been determined and compared with experimental data available in literature for polymeric solutions. The predicted results have been found to be in fair agreement with the experimental data at low shear rates and only in qualitative agreement at high shear rates and low frequencies. A comparison of the present theoretical results has also been made with the predictions of other theories.In the case of large amplitude superposition, the effect of oscillations upon the steady shear flow characteristics has been determined, indicating that the orthogonal superposition has less influence on the steady state shear stresses and the first difference of normal stresses than the parallel superposition. However, in the orthogonal superposition a more pronounced influence has been observed for the second difference of normal stresses.  相似文献   

3.
Kinetic theory of dilute macromolecular solutions is applied to pressure driven flow in a small channel where wall- (and interfacial) layers have to be reckoned with. The complete rheology is studied. It turns out that for very small channels both the shear stress and the normal stress are an order of magnitude larger than corresponding quantities in simple shear. On the other hand, when the channel is so wide that the wall layers are very thin in comparison, agreement with results appropriate for simple shear is found. The volume flow rate-pressure difference relation is derived and compared to the prediction which utilizes the slip velocity concept. For very small channels, this concept is five orders of magnitude off, but reproduces asymptotically correct results for very large channels.  相似文献   

4.
The extensional flow behaviour of dilute aqueous solutions of a partiallyhy-drolyzed polyacrylamide and a surfactant were investigated in an extensional flow cell. The cell was designed such that fluids were subjected to steady shear before undergoing extensional motion in a converging channel. Extensional resistance was monitored by measuring the pressure drop through the channel. Such measurements were made over a range of extensional rates at fixed values of the upstream shear rate. Solutions of different concentrations were tested — up to 40 ppm of polyacrylamide and 450 ppm of surfactant — at various temperatures in the case of surfactant and for different types and amounts of salt in the case of polyacrylamide. Of the results, the more notable are that the extensional resistance of polyacrylamide solutions is affected much more by CaCl2 than by NaCl and that surfactant solutions do not exhibit extensional resistance unless they are pre-sheared.  相似文献   

5.
Aqueous solutions of cationic surfactant systems with strongly binding counterions show the striking phenomenon of shear induced phase transitions. At low shear rates or angular frequencies, the solutions exhibit Newtonian flow. At high rates of shear, however, the rheological properties change dramatically. Above a well defined threshold value of the velocity gradient, a supermolecular structure can be formed from micellar aggregates. This shear induced structure (SIS) behaves like a gel and exhibits strong flow birefringence. The formation of the shear induced structure is very complicated and depends on the specific conditions of the surfactant system. In this paper we discuss new results which have been obtained from rheological measurements and from flow birefringence data. We examine the stability of the shear induced state as a function of temperature, surfactant concentration and salt concentration and we analyse the effect of solubilisation of alcohols and hydrocarbons. The results are interpreted in terms of a kinetic model which accounts for the observed behavior.Dedicated to the 60. birthday of Prof. H. Harnisch, Hoechst AGPartly presented at the 2nd Conference of European Rheologists, Prague, June 17–20, 1986  相似文献   

6.
Rheological measurements and light-scattering experiments were performed on dilute solutions of high molecular polystyrene. We are able to describe the orientation behavior of chain molecules under shear flow by means of light-scattering. Beyond that these investigations of light-scattering of flowing polymer solutions are an useful and suitable tool for detection and characterization of Taylor vortex formation. We can estimate the appearance of these hydrodynamic instabilities, which overlay the laminar main flow and we can observe a typical influence of the solvent power on it.Presented in part at the meeting of the Deutsche Rheologische Gesellschaft, Berlin, 13–15 May, 1991.  相似文献   

7.
It is shown that in a truly bimodal coal-water slurry the hydrodynamic interactions between the coarse particles impose on the fine fraction a shear rate higher than that applied externally by the viscometer walls. A semi-empirical function of the coarse volume fraction is obtained for this correction factor to the applied shear rate. The derivation of this shear correction factor is based on lubrication concepts and introduces the maximum packing fraction,ø m, at which flow can take place.ø m is obtainable from a simple dry packing experiment. It is shown that the contribution of the coarse particles to the viscosity rise can be successfully described by a viscosity model employing the same concepts used to derive the shear correction factor. The bimodal model is applied in the high shear limit to polymodal coal slurries with a continuous particle size distribution. In the model, the contribution of the coarse particles to the viscosity rise is taken from separate viscosity measurements for the coarse coal particles, while the contribution to the viscosity of the fine coal particles is taken to be that given by the measured viscosity of colloidal suspensions of monomodal rigid spheres. It is shown that there is a ratio of coarse to fine fraction volumes in the continuous size distribution, corresponding to a specific separating particle size, for which the measured viscosities of the polymodal slurries match almost perfectly over the whole solids volume fraction range with the viscosity values obtained using the bimodal approach. The match is found to be relatively insensitive to the precise value of the separating particle size.  相似文献   

8.
As part of an EEC Science Stimulation programme on extensional viscosity two major conferences were organised on the subject. The second of these was devoted to the results obtained on a standard fluid, M 1. The data obtained in shear flow was remarkably consistent from laboratory to laboratory. Extensional flow results presented quite a different picture. Using a series of nonequilibrium techniques such as the spinline rheometer, opposing jet, falling drop and converging flow, extensional viscosity results were obtained which differed by as much as two to three orders of magnitude. Nevertheless, it was apparent that consistancy did exist between similar techniques. It is in the context of this information that the measurements described below have been made.The shear and extensional flow properties of partially ionised polyacrylamide in solution at concentrations ranging from 5 ppm were measured. The method of solution preparation was found to have a profound effect on the behaviour of the solutions in shear flow. The influence of salt concentration and pH was investigated and is discussed in the context of molecular shape in solution.Extensional flow measurements, using the spinline rheometer, show that the solutions are strongly strain thickening even at concentrations as low as 5 ppm. These results are considered in the light of polymer entanglement and association in the strong flow field.Delivered as a Keynote Lecture at the Golden Jubilee Conference of the British Society of Rheology and Third European Rheology Conference, Edinburgh, 3–7 September, 1990.  相似文献   

9.
The rheological behavior of stable slurries is shown to be characterized by a bimodal model that represents a slurry as made up of a coarse fraction and a colloidal size fine fraction. According to the model, the two fractions behave independently of each other, and the non-Newtonian behavior of the viscosity is solely caused by the colloidal fraction, while the coarse fraction increases the viscosity level through hydrodynamic interactions. Data from experiments run with colloidal coal particles of about 2–3 µm average size dispersed in water show the viscosity of these colloidal suspensions to exhibit a highly shearrate-dependent behavior and, in the high shear limit, to match very closely the viscosity of suspensions of uniform size rigid spheres although the coal volume fraction must be determined semi-empirically. Different amounts of coarse coal particles are added to the colloidal suspension and the viscosity of the truly bimodal slurries measured as a function of shear rate. In agreement with the bimodal model, the measured shear viscosities show the coarse fraction to behave independently of the colloidal fraction and its contribution to the viscosity rise to be independent of the shear rate. It is shown that the shear rate exerted on the colloidal fraction is higher than that applied by the viscometer as a result of hydrodynamic interactions between the coarse particles, and that it is this effective higher shear rate which is necessary to apply in the correlations. For determining the coal volume fraction a relatively simple and quite accurate measurement technique is developed for determining the density and void fraction of coarse porous particles; the technique directly relates volume fraction to mass fraction.  相似文献   

10.
In a recent series of papers, Öttinger's consistently averaged hydrodynamic interaction has been shown to yield shear-rate dependent viscosity and normal stress coefficients in steady shear flow for dilute solutions of elastic dumbbells and chains. Even more recently, Fan has numerically solved the diffusion equation for the Hookean dumbbell with complete hydrodynamic interaction and he has compared his results with those of the Öttinger model.In this paper, a new approximation1 for the Oseen—Burgers tensor is proposed where the configuration-dependent terms are replaced by appropriate averages rather than averaging the Oseen—Burgers tensor as a whole as in the Öttinger model. The proposed model leads to a differential constitutive equation which at low shear rates is similar to the Giesekus constitutive equation for a Hookean dumbbell with anistropic drag and anisotropic Brownian motion. The steady shear viscosity and normal stress coefficients for the proposed model are shear-rate dependent and are in close agreement with Fan's numerical calculations. Elongational viscosity for both positive and negative elongation rates are calculated.  相似文献   

11.
A new eccentric-cylinder rheometer with guard-ring equipment was constructed as an auxiliary set-up to a Rheometrics Mechanical Spectrometer, type 7200, which enables measurements with the eccentric disk technique. Experimental tests with Newtonian fluids and polymer solutions of relatively low viscosity show that this instrument yields reliable plots of shear viscosity and first normal-stress coefficient over several decades of the effective average shear rate. These coincide very well with plots from a commercial cone-and-plate rheometer even for higher relative eccentricities (up to 0.75). However, no systematic effects of eccentricity, to be expected for higher shear rates, could be observed with these fluids, so that supplementary tests applying fluids with more pronounced viscoelastic properties are to be carried out.  相似文献   

12.
The stability of Taylor-Couette flow of entangled polymeric solutions to small axisymmetric stationary disturbances is analyzed using the Doi-Edwards constitutive equation in the small gap limit. A previous analysis of Karlsson, Sokolov, and Tanner for the general K-BKZ equation, of which the Doi-Edwards equation is a special case, reduces the problem to one of numerically evaluating seven viscoelastic functions of the shear rate in the gap. Of these seven, only three — two of which are related to the second normal stress difference, and one of them to shear thinning — significantly affect the flow stability. The negative second normal stress difference of the Doi-Edwards fluid stabilizes the flow at low values of the Weissenberg number 1 , while shear thinning produces strong destabilization at moderate Weissenberg number. Here 1 is the longest relaxation time. Non-monotonic effects of viscoelasticity on Taylor-Couette stability analogous to those predicted here have been observed in experiments of Giesekus. The extreme shear thinning of the Doi-Edwards fluid is also predicted to produce a large growth in the height of the Taylor cells, a phenomenon that has been seen experimentally by Beavers and Joseph.  相似文献   

13.
The diffusion equation for the configurational distribution function of Hookean dumbbell suspensions with the hydrodynamic interaction (HI) was solved, in terms of Galerkin’s method, in steady state shear flow; and viscosity,first and second normal-stress coefficients and molecular stretching were then calculated. The results indicate that the HI included in a microscopic model of molecules gives rise to a significant effect on the macroscopic properties of Hookean dumbbell suspensions. For example, the viscosity and the first normal stress coefficient, decreasing as shear rate increases, are no longer constant; the second normal-stress coefficient, being negative with small absolute value and shear-rate dependent, is no longer zero; and an additional stretching of dumbbells is yielded by the HI. The viscosity function and the first normal-stress coefficient calculated from this method are in agreement with those predicted from the self-consistent average method qualitatively, while the negative second normal-stress coefficient from the former seems to be more reasonable than the positive one from the latter.  相似文献   

14.
K. Haldar 《Rheologica Acta》1988,27(4):434-436
An approximate solution for the problem of fluid flow through a rigid tube with a mild constriction is given. It is assumed that the fluid is visco-elastic (Maxwell fluid) and the constriction is non-symmetric with respect to the radial distance. A theoretical result is given for the wall shear stress and numerical solutions are shown graphically for different values of the relaxation time and the shape parameter of the constriction profile.  相似文献   

15.
J. C. Dyre 《Rheologica Acta》1990,29(2):145-151
Based on the Cox-Merz rule and Eyring's expression for the nonlinear shear viscosity, a Wagner-type constitutive relation with no nontrivial adjustable parameters is proposed for simple shear viscoelasticity. The predictions for a number of non-steady shear flows are worked out analytically. It is shown that most features of shear viscoelasticity are reproduced by the model.  相似文献   

16.
Results are reported for the dynamic moduli,G andG, measured mechanically, and the dynamic third normal stress difference, measured optically, of a series bidisperse linear polymer melts under oscillatory shear. Nearly monodisperse hydrogenated polyisoprenes of molecular weights 53000 and 370000 were used to prepare blends with a volume fraction of long polymer, L, of 0.10, 0.20, 0.30, 0.50, and 0.75. The results demonstrate the applicability of birefringence measurements to solve the longstanding problem of measuring the third normal stress difference in oscillatory flow. The relationship between the third normal stress difference and the shear stress observed for these entangled polymer melts is in agreement with a widely predicted constitutive relationship: the relationship between the first normal stress difference and the shear stress is that of a simple fluid, and the second normal stress difference is proportional to the first. These results demonstrate the potential use of 1,3-birefringence to measure the third normal stress difference in oscillatory flow. Further, the general constitutive equation supported by the present results may be used to determine the dynamic moduli from the measured third normal stress difference in small amplitude oscillatory shear. Directions for future research, including the use of birefringence measurements to determineN 2/N 1 in oscillatory shear, are described.  相似文献   

17.
18.
19.
20.
The nonlinear viscoelastic properties of a fairly large class of polymeric fluids can be described with the factorable single integral constitutive equation. For this class of fluids, a connection between the rheological behaviour in different flow geometries can be defined if the strain tensor (or the damping function) is expressed as a function of the invariants of a tensor which describes the macroscopic strain, such as the Finger tensor. A number of these expressions, proposed in the literature, are tested on the basis of the measuring data for a low-density polyethylene melt. In the factorable BKZ constitutive equation the strain-energy function must be expressed as a function of the invariants of the Finger tensor. The paper demonstrates that the strain-energy function can be calculated from the simple shear and simple elongation strain measures, if it is assumed to be of the shape proposed by Valanis and Landel. The measuring data for the LDPE melt indicate that the Valanis-Landel hypothesis concerning the shape of the strainenergy function is probably not valid for polymer melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号