首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
制备了一种含芳基噻唑基团热稳定环氧树脂材料(TDABZ),通过傅里叶变换红外光谱(FTIR)对其结构进行了表征,采用热重分析-微熵热重分析(TGA-DTG)计算了TDABZ的热分解动力学参数,利用热重分析(TGA)和动态热机械分析(DMTA)探讨了TDABZ的耐热性能。 结果表明,TDABZ通过TGDDM结构中的环氧基团与混合固化剂(DDS和2-ABZ)结构中的活泼氢反应,在较低的温度下就能完全交联固化。 通过Kissinger和Ozawa方法求得TDABZ的热分解活化能分别为205.5和221.9 kJ/mol。 TDABZ固化物具有优异的耐热性能,双悬臂梁法测得的玻璃化转变温度(Tg)达到242.3 ℃,在N2气气氛下失重5%对应的温度(Td5)为340.2 ℃,最大失重速率对应的温度(Tdmax)为395.5 ℃,600 ℃的质量保留率为24.1%,显著提高了环氧树脂的热稳定性能,拓宽了其应用领域。  相似文献   

2.
用傅里叶红外光谱、差示扫描量热仪和热重分析测试技术研究了双酚A甲醛酚醛环氧树脂(bis-ANER)与二氨基二苯醚(DDE)的固化反应及其固化产物的热降解性能。在等温固化反应中环氧基团红外光谱吸收强度随固化时间延长而逐渐减弱,羟基吸收强度逐渐增强,固化反应后期出现羰基红外吸收,其强度随固化时间的延长而增强。用Kissinger法和Ozawa-Flynn-Wall法计算出的bis-ANER/DDE非等温固化反应活化能分别为57.6和61.5kJ/mol。固化产物的热降解首先是醚键的断裂,在N2气和O2气气氛下起始阶段的热降解反应均符合g(α)=[-ln(1-α)]2/3的核增长反应机理,2种气氛下高温阶段的热降解机理不同,O2气在降解过程中产生氧化作用。  相似文献   

3.
Synthesis and Thermal Properties of a Novel Nitrogen-containing Epoxy Resin   总被引:1,自引:0,他引:1  
A new nitrogen-containing epoxy resin (XT resin) was synthesized from chain extension of xylenephenolformaldehYlde resin (XPF) and triglycidyl isocyanurate (TGIC) in the presence of base catalyst. FT-IR and H-NMR analysis confirmed the chemical structure of XT resin. It was cured with dicyandiamide (DICY) and diaminodiphenyl sulfone (DDS). Dynamic mechanical analysis (DMA) results showed that the introduction of triazine ring provides epoxy polymer with good thermal stability. Furthermore, high char yields at 800℃ in thermogravimetric (TGA)analysis indicated that XT resin had potential flame retardance.  相似文献   

4.
Abstract

A novel cyclotriphosphazene-based epoxy monomer, hexa-[4-(glycidyloxycarbonyl) phenoxy]cyclotriphosphazene (HGCP), was synthesized via a four-step synthetic route, and fully characterized by 1H, 13C, and 31P NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Thermosetting systems based on HGCP with three curing agents, for example, 4,4′-diaminodiphenylsulfone (DDS), 4,4′-diaminodiphenylmethane (DDM), and dicyandiamide (DICY), were used for making a comparison of their thermal curing behaviors. The curing behaviors were measured by differential scanning calorimetry. Moreover, flame retardancy of HGCP thermosetting systems was estimated by Limiting Oxygen Index (LOI) and Vertical Burning Test (UL-94). The resulting HGCP thermosetting systems exhibited better flame retardancy than the common epoxy resins diglycidyl ether of bisphenol A (DGEBA) and the regular brominated bisphenol A epoxy resin (TBBA) cured by DDS, respectively. When HGCP was cured by DDS, its thermosetting system gave the most char residues, met the UL-94 V-0 classification, and had a limiting oxygen index value greater than 35.  相似文献   

5.
The curing kinetics of bisphenol-F epoxy resin (BPFER) and curing agent 3-methyl-1,2,3,6-tetrahydrophthalic anhydride (MeTHPA), with N,N-dimethyl-benzylamine as an accelerator, were studied by differential scanning calorimetry (DSC). Analysis of DSC data indicated that an autocatalytic behavior showed in the first stages of the cure for the system, which could be well described by the model proposed by Kamal, which includes two rate constants, k 1 and k 2, and two reaction orders, m andn. The curing reaction at the later stages was practically diffusion-controlled. To consider the diffusion effect more precisely, diffusion factor, d(a), was introduced into Kamal's equation. The glass transition temperatures (T gs) of the BPFER/MeTHPA samples were determined by means of torsional braid analysis (TBA). The thermal degradation kinetics of cured BPFER were investigated by thermogravimetric analysis (TG). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
刁智俊  赵跃民  陈博  段晨龙 《化学学报》2012,70(19):2037-2044
采用ReaxFF动力学方法模拟了非交联固化环氧树脂在不同温度和升温速率下的热解特性. 结果表明, 含N和含O桥键的断裂是热解的引发反应. 观察到H2O的4种主要的生成途径, 而这些反应途径都涉及到含羟基的前驱体. 当反应温度较低时, H2O为热解的主要产物. 而在高温条件下, 热解的主要产物为H2, 它主要为分子内/分子间脱氢反应和氢自由基的夺氢反应的产物; 高温同时促进了含石墨烯结构且分子量较大的碳团簇的形成. 除此之外, 还观察到了CH4, HCN, NH3和CO等小分子产物. 本文用ReaxFF动力学方法模拟所得的气体产物以及含类似石墨烯结构的碳团簇与实际实验结果一致, 说明ReaxFF动力学方法能为从分子水平上研究有机物高温热解反应提供了一种有效的途径.  相似文献   

7.
A comparative study of the structural, thermal, mechanical and thermomechanical properties of ethylene-octene copolymer 1
  • 1 Ethylene-octene copolymer is produced using Dow's INSITETM ™ constrained geometry catalyst and process technology. ENGAGE the trade name of this copolymer.
  • (mPE) 2
  • 2 This copolymer will be represented as mPE .
  • nanocomposites synthesized with pure nanosilica (NS) and nanosilica-functionalized with diglycidyl ether of bisphenol-A (ENS) has been reported. These nanocomposites were prepared using “melt mixing” method at a constant loading level of 2.5 wt. %. The effects of pure nanosilica (NS) and epoxy resin-functionalized-nanosilica (ENS) on the above mentioned properties of ethylene-octene copolymer were analyzed by wide-angle-x-ray diffractometer (WAXD), transmission electron microscope (TEM), thermo gravimetric analyzer (TGA), differential scanning calorimeter (DSC), dynamic mechanical analyzer (DMA) and scanning electron microscope (SEM). TEM studies have shown a better dispersion of nanoparticles in case of ethylene-octene copolymer-epoxy resin-functionalized-nanosilica nanocomposite (mPE-ENS) than that of ethylene-octene copolymer-nanosilica nanocomposite (mPE-NS). The tensile tests show that organic modification of nanosilica particles brings up an appreciable increase in yield strength, ultimate tensile strength and elongation at break of the polymer. DMA studies have shown an increase in the storage modulus and glass transition temperature for mPE-ENS with respect to mPE-NS. Further, the TGA results have shown a higher thermal stability for mPE-ENS in comparison to mPE-NS.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号