首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of methane hydrate growth and decomposition were studied by nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). Three well-known large molecule guest substances (LMGS) were used as structure H hydrate formers: 2,2-dimethylbutane (NH), methylcyclohexane (MCH), tert-butyl methyl ether (TBME). In addition, the impact of a non-hydrate former (n-heptane/nC7) was studied. The methane diffusion and hydrate growth were monitored by recording the 2H NMR spectra at 253 K and approximately 4.5 MPa for 20 h. The results revealed that methane diffuses faster in TBME and NH, slower in nC7, and slowest in MCH. The TBME system gives the fastest hydrate formation kinetics followed by NH, MCH, and nC7. The conversion of water into hydrate was also observed. The imaging study showed that TBME has a strong affinity toward ice, which is not the case for the NH and MCH systems. The degree of ice packing was also found to affect the LMGS distribution between ice particles. Highly packed ice increases the mass transfer resistance and hence limits the contact between LMGS and ice. It was also found that "temperature ramping" above the ice point improves the conversion significantly. Finally, hydrates were found to dissociate quickly within the first hour at atmospheric pressure and subsequently at a much slower rate. Methane dissolved in LMGS was also seen. The residual methane in hydrate phase and dissolved in LMGS phase explain the faster kinetics during hydrate re-formation.  相似文献   

2.
Dissociation processes of methane hydrate synthesized with glass beads were investigated using powder X-ray diffraction and calorimetry. Methane hydrate formed with coarse glass beads dissociated quickly at 150-200 K; in this temperature range methane hydrate dissociates at atmospheric pressure. In contrast, methane hydrate formed with glass beads less than a few microns in size showed very high stability up to just below the melting point of ice, even though this temperature is well outside the zone of thermodynamic stability of the hydrate. The rate-determining steps for methane hydrate dissociation within pores are also discussed. The experimental results suggest that methane hydrate existing naturally within the pores of fine particles such as mud at low temperatures would be significantly more stable than expected thermodynamically.  相似文献   

3.
《Fluid Phase Equilibria》2006,242(2):123-128
The kinetic data of methane hydrate dissociation at various temperatures and pressures were measured in a sapphire cell apparatus by depressurizing method. When the temperature was higher than 0 °C, the experimental results showed that the hydrate dissociation rate was controlled by intrinsic dissociation reaction. When the temperature was lower than 0 °C, water generated from the hydrate dissociation would transform into ice rapidly at the surface of hydrate crystal. The released gas diffused from the hydrate and ice mixture to the bulk of gas phase. With the hydrate continuous dissociation, the boundary of ice–hydrate moved toward water/ice phase. The hydrate dissociation was controlled by gas diffusion, and the hydrate dissociation process was treated as a moving boundary problem. Corresponding kinetic models for hydrate dissociation were established and good agreements with experimental data were achieved.  相似文献   

4.
The thermal stability of gamma-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210-260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 +/- 1.6 kJ/mol for the lower temperature region of 210-230 K and 54.8 +/- 5.7 kJ/mol for the higher temperature region of 235-260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235-260 K.  相似文献   

5.
Modulated DSC for gas hydrates analysis   总被引:1,自引:0,他引:1  
Modulated DSC has been applied to the study of methane, ethane and propane hydrates at different hydrate and ice concentrations. The reversing component of the TMDSC curves, makes it possible to characterize such hydrates. Methane and ethane hydrates show the melting-decomposition peak at a temperatures higher than the ice contained in the sample, while propane hydrate melts and decomposes at lower temperature than the ice present in the sample. The hydrate peaks tend to disappear if the hydrate is stored at atmospheric pressure. Guest size and cavity occupation fix the heat of dissociation and stability of the hydrates, as confirmed by parallel tests on tetrahydrofurane hydrates.  相似文献   

6.

To study the influence exerted by oxidized oil components on the nucleation and growth of gas hydrates the nucleation of methane hydrate and ice in 50 wt % emulsions of oil in native oil and two samples of the same oil subjected to biodegradation for 30 and 60 days (samples N, V30, and V60, respectively) were examined. In the course of measurements, the samples were cooled to–15°C at a constant rate of 0.14 deg min–1 and then heated to the initial temperature. The initial methane pressure in the system was 15 MPa at 20°C. In the process, the temperatures were recorded at which heat effects corresponding to the formation of hydrate/ice and the melting of these. In the case of emulsion N, no exothermic effects were manifested in the cooling stage. In the heating stage, the endothermic effects of ice melting were found in half of the samples. No effects corresponding to the decomposition of the hydrate were observed. In experiment with V30 samples, the formation of the hydrate and ice was manifested as strong exothermic effects. Ice was formed in all the experiments, and the hydrate, only in 21% of the samples. Finally, in experiments with V60, ice and the hydrate were formed in 54 and 13% of cases, respectively. Their formation was manifested as weak exothermic effects in the cooling stage. Thus, it was demonstrated that the biodegradation level of oil samples affects the nucleation of methane hydrate and ice in emulsions formed on the basis of these samples.

  相似文献   

7.
In this paper we report a successful molecular simulation study exploring the heterogeneous crystal growth of sI methane hydrate along its [001] crystallographic face. The molecular modeling of the crystal growth of methane hydrate has proven in the past to be very challenging, and a reasonable framework to overcome the difficulties related to the simulation of such systems is presented. Both the microscopic mechanisms of heterogeneous crystal growth as well as interfacial properties of methane hydrate are probed. In the presence of the appropriate crystal template, a strong tendency for water molecules to organize into cages around methane at the growing interface is observed; the interface also demonstrates a strong affinity for methane molecules. The maximum growth rate measured for a hydrate crystal is about 4 times higher than the value previously determined for ice I in a similar framework (Gulam Razul, M. S.; Hendry, J. G.; Kusalik, P. G. J. Chem. Phys. 2005, 123, 204722).  相似文献   

8.
The behavior of methane hydrate was investigated after it was pressurized with helium or nitrogen gas in a test system by monitoring the gas compositions. The results obtained indicate that even when the partial pressure of methane gas in such a system is lower than the equilibrium pressure at a certain temperature, the dissociation rate of methane hydrate is greatly depressed by pressurization with helium or nitrogen gas. This phenomenon is only observed when the total pressure of methane and helium (or nitrogen) gas in the system is greater than the equilibrium pressure required to stabilize methane hydrate with just methane gas. The following model has been proposed to explain the observed phenomenon: (1) Gas bubbles develop at the hydrate surface during hydrate dissociation, and there is a pressure balance between the methane gas inside the gas bubbles and the external pressurizing gas (methane and helium or nitrogen), as transmitted through the water film; as a result the methane gas in the gas bubbles stabilizes the hydrate surface covered with bubbles when the total gas pressure is greater than the equilibrium pressure of the methane hydrate at that temperature; this situation persists until the gas in the bubbles becomes sufficiently dilute in methane or until the surface becomes bubble-free. (2) In case of direct contact of methane hydrate with water, the water surrounding the hydrate is supersaturated with methane released upon hydrate dissociation; consequently, methane hydrate is stabilized when the hydrostatic pressure is above the equilibrium pressure of methane hydrate at a certain temperature, again until the dissolved gas at the surface becomes sufficiently dilute in methane. In essence, the phenomenon is due to the presence of a nonequilibrium state where there is a chemical potential gradient from the solid hydrate particles to the bulk solution that exists as long as solid hydrate remains.  相似文献   

9.
活性炭中甲烷水合物的分解动力学   总被引:9,自引:0,他引:9  
刘犟  阎立军  陈光进  郭天民 《化学学报》2002,60(8):1385-1389
在封闭体系内,在初始分解压力0.1 MPa,温度范围276~265 K之间,测定了 五组甲烷水合物在活性炭中的解动力学数据。分析了甲烷水合物在活性炭中分解的 物理过程,提出了以微分方程表达的宏观分解动力学模型。使用单步积分的吉尔( Gear)方法解得微分方程的数值解,结合单纯形最优化方法拟合模型参数,模型计 算值与实验值符合良好。  相似文献   

10.
采用悬滴法系统地测定了温度274.2 ~ 282.2 K、压力0.1 ~ 10.1 MPa下甲烷/纯水间界面张力。实验结果表明在恒定温度下界面张力随压力的增加而增大。在高压条件下,压力对界面张力有很大的影响。不同温度和压力下计算出的甲烷在水中的表面过剩浓度结果表明,压力越高,温度越低,甲烷在水溶液中的吸附浓度越高。同时,计算出的甲烷在水溶液中的表面吸附自由能结果表明,在水合物生成条件下,甲烷在水中的吸附比298.2 K更容易。  相似文献   

11.
Contrary to the thermodynamic inhibiting effect of methanol on methane hydrate formation from aqueous phases, hydrate forms quickly at high yield by exposing frozen water–methanol mixtures with methanol concentrations ranging from 0.6–10 wt % to methane gas at pressures from 125 bars at 253 K. Formation rates are some two orders of magnitude greater than those obtained for samples without methanol and conversion of ice is essentially complete. Ammonia has a similar catalytic effect when used in concentrations of 0.3–2.7 wt %. The structure I methane hydrate formed in this manner was characterized by powder X‐ray diffraction and Raman spectroscopy. Steps in the possible mechanism of action of methanol were studied with molecular dynamics simulations of the Ih (0001) basal plane exposed to methanol and methane gas. Simulations show that methanol from a surface aqueous layer slowly migrates into the ice lattice. Methane gas is preferentially adsorbed into the aqueous methanol surface layer. Possible consequences of the catalytic methane hydrate formation on hydrate plug formation in gas pipelines, on large scale energy‐efficient gas hydrate formation, and in planetary science are discussed.  相似文献   

12.
We used a confocal scanning microscope to observe growth and texture change of ice due to the dissociation of methane gas clathrate hydrate (CH(4) hydrate). The experiments were done under CH(4) gas atmospheric pressure and isothermal conditions between 170 and 268 K. Above 193 K, the dissociation of CH(4) hydrate resulted in many small ice particles that covered the hydrate surface. These ice particles had roughly the same shape and density between 193 and 210 K. In contrast, above 230 K the ice particles developed into a sheet of ice that covered the hydrate surface. Moreover, the measured release of CH(4) gas decreased when the sheet of ice formed at the surface of the hydrate. These findings can explain the anomalous preservation behavior of CH(4) hydrate; that is, the known increase of storage stability of CH(4) hydrate above 240 K is likely related to the formation of the ice that we observed in the experiments.  相似文献   

13.
A single-sided transient plane source technique has been used to determine the thermal conductivity and thermal diffusivity of a compacted methane hydrate sample over the temperature range of 261.5-277.4 K and at gas-phase pressures ranging from 3.8 to 14.2 MPa. The average thermal conductivity, 0.68 +/- 0.01 W/(m K), and thermal diffusivity, 2.04 x 10(-7) +/- 0.04 x 10(-7) m2/s, values are, respectively, higher and lower than previously reported values. Equilibrium molecular dynamics (MD) simulations of methane hydrate have also been performed in the NPT ensemble to estimate the thermal conductivity for methane compositions ranging from 80 to 100% of the maximum theoretical occupation, at 276 K and at pressures ranging from 0.1 to 100 MPa. Calculations were performed with three rigid potential models for water, namely, SPC/E, TIP4P-Ew, and TIP4P-FQ, the last of which includes the effects of polarizability. The thermal conductivities predicted from MD simulations were in reasonable agreement with experimental results, ranging from about 0.52 to 0.77 W/(m K) for the different potential models with the polarizable water model giving the best agreement with experiments. The MD simulation method was validated by comparing calculated and experimental thermal conductivity values for ice and liquid water. The simulations were in reasonable agreement with experimental data. The simulations predict a slight increase in the thermal conductivity with decreasing methane occupation of the hydrate cages. The thermal conductivity was found to be essentially independent of pressure in both simulations and experiments. Our experimental and simulation thermal conductivity results provide data to help predict gas hydrate stability in sediments for the purposes of production or estimating methane release into the environment due to gradual warming.  相似文献   

14.
Two methods, rapidly depressurizing to 0.1 MPa at a constant temperature and rising temperature under equilibrium P, T conditions, were used to study the dissociation of pure CH4 hydrate formed below the ice point. At a constant temperature with rapidly depressurizing to 0.1 MPa, CH4 hydrate dissociated rapidly at initial dissociation and then the dissociation rate gradually decreased. However, the dissociation of CH4 hydrate at temperatures of 261 to 266 K was much faster than that at temperatures of 269 to 272 K, indicating its anomalous preservation. Under an equilibrium P, T conditions, rising temperature had extensively controlling impact on dissociation of CH4 hydrate at equilibrium pressures of 2.31, 2.16 and 1.96 MPa. In this study, we report the effect of pressure on CH4 hydrate dissociation, especially the effect of equilibrium pressure on dissociation at various melting temperatures. And we find that the ice particles size of CH4 hydrate formed may dominant the CH4 hydrate dissociation. Dissociation of CH4 hydrate formed from ice particles of smaller than 250 μm may not have an anomalous preservation below the ice point, while particles larger than 250 μm may have more extensive anomalous preservation.  相似文献   

15.
The specific surface area of methane hydrates, formed both in the presence and absence of sodium dodecyl sulfate (SDS) and processed in different manners (stirring, compacting, holding the hydrates at the formation conditions for different periods of time, cooling the hydrates for different periods of time before depressurizing them), was measured under atmospheric pressure and temperatures below ice point. It was found that the specific surface area of hydrate increased with the decreasing temperature. The methane hydrate in the presence of SDS was shown to be of bigger specific surface areas than pure methane hydrates. The experimental results further demonstrated that the manners of forming and processing hydrates affected the specific surface area of hydrate samples. Stirring or compacting made the hydrate become finer and led to a bigger specific surface area. Supported by the National natural Science Foundation of China (Grant Nos.20490207, 2076145, uo633003), Program for New Century Excellent Talents in University and National The National High Technology Research and Development Program of China Project.  相似文献   

16.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

17.
High pressure and low temperature experiments with CO(2) hydrate were performed using diamond anvil cells and a helium-refrigeration cryostat in the pressure and temperature range of 0.2-3.0 GPa and 280-80 K, respectively. In situ x-ray diffractometry revealed that the phase boundary between CO(2) hydrate and water+CO(2) extended below the 280 K reported previously, toward a higher pressure and low temperature region. The results also showed the existence of a new high pressure phase above approximately 0.6 GPa and below 1.0 GPa at which the hydrate decomposed to dry ice and ice VI. In addition, in the lower temperature region of structure I, a small and abrupt lattice expansion was observed at approximately 210 K with decreasing temperature under fixed pressures. The expansion was accompanied by a release of water content from the sI structure as ice Ih, which indicates an increased cage occupancy. A similar lattice expansion was also described in another clathrate, SiO(2) clathrate, under high pressure. Such expansion with increasing cage occupancy might be a common manner to stabilize the clathrate structures under high pressure and low temperature.  相似文献   

18.
The results on a dissociation behavior of propane hydrates prepared from "dry water" and contained unreacted residual water in the form of ice inclusions or supercooled liquid water(water solution of gas) were presented for temperatures below 273 K.The temperature ramping or pressure release method was used for the dissociation of propane hydrate samples.It was found that the mechanism of gas hydrate dissociation at temperatures below 273 K depended on the phase state of unreacted water in the hydrate sample.Gas hydrates dissociated into ice and gas if the ice inclusions were in the hydrate sample.The samples of propane hydrates with inclusions of unreacted supercooled water only(without ice inclusions) dissociated into supercooled water and gas below the pressure of the supercooled water-hydrate-gas metastable equilibrium.  相似文献   

19.
甲烷水合物导热系数是甲烷水合物勘探、开采、储运以及其他应用过程中一个十分重要的物理参数.我们采用平衡分子动力学(EMD)方法Green-Kubo理论计算温度203.15~263.15K、压力范围3~100MPa、晶穴占有率为0~1的sI甲烷水合物的导热系数,采用的水分子模型包括TIP4P、TIP4P-Ew、TIP4P-FQ、TIP4P/2005、TIP4P/Ice.研究了主客体分子、外界温压条件等对甲烷水合物导热性能的影响.研究结果显示甲烷水合物的低导热性能由主体分子构建的sI笼型结构决定,而客体分子进入笼型结构后,使得笼型结构导热性能增强,同时进入笼型结构的客体分子越多,甲烷水合物导热性能越强.研究结果还显示在高温区域(T〉TDebye/3)内不同温度作用下,所有sI水合物具有相似的导热规律.压力对导热系数有一定影响,尤其是在较高压力条件下,压力越高,导热系数越大.而在不同温度和不同压力作用过程中,密度的改变对导热系数的增大或减小几乎没有影响.  相似文献   

20.
The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号