首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Composite of polyacrylamide-bentonite (PAA-B) was prepared by direct polymerization in a suspension of bentonite (B), the composite was then modified by phytic acid (PAA-B-Phy). The parameters related to adsorption of UO2 2+ in absence and presence of 0.01M CaCl2 and of natural radionuclides (Tl+, Pb2+, Ra2+ and Ac3+ in a leaching solution) onto PAA-B and PAA-B-Phy, and thermodynamics of the adsorption were investigated. Adsorption isotherms were of L and H types for the adsorption of UO2 2+ onto PAA-B and PAA-B-Phy, whilst for Tl+, Pb2+, Ra2+ and Ac3+ they were of C type for both adsorbents. Langmuir equilibrium constants for the adsorption of all studied ions onto PAA-B-Phy were significantly higher than those found for PAA-B. The thermodynamic parameters indicated that adsorption reactions are spontaneous in terms of adsorption free enthalpy. The composite of PAA-B and its modification by Phy have been used for the first time in this study. It is concluded that the composites can be practically used for adsorption and applied as adsorbent of radionuclides.  相似文献   

2.
The adsorption of naturally occurring radionuclides (UO2 2+, Tl+, Pb2+, Ra2+, Bi3+ and Ac3+) onto zeolite (Z) and polyacrylamide-zeolite composite (PAA-Z) and its modified composition by phytic acid (Z-Phy and PAA-Z-Phy) were investigated. Adsorption parameters were derived from the Langmuir and Freundlich fits to adsorption isotherms of the ions studied. The adsorption isotherms were of L and H types. The adsorption capacity of Z decreased by PAA inclusion, but the Phy modification of PAA-Z increased the capacity back to that of Z. The Phy modification made the adsorption spontaneity at least ten times better than in the absence of Phy. This investigation showed that the zeolite, as one of the most abundant natural materials and commonly used adsorbent can also be used for the removal of UO2 2+ and, in the PAA-Z form, of the studied radionuclides. The usage of Z, as PAA-Z and its Phy modification provide research materials which possess adequate practicality and effectiveness in studies of adsorption. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A novel magnetic nanoadsorbent was prepared by the covalent binding of carboxymethyl chitosan (CMC) onto the surface of Fe3O4 magnetic nanoparticles, which was developed using a coprecipitating method. This nanoadsorbent was characterized by transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD), etc. Moreover, the adsorption performance of the nanoadsorbent toward Zn2+ ions was investigated. The results showed that the mean diameter of the magnetic nanoadsorbent was 18 nm and the amount of CMC was about 5%. The nanoadsorbent showed high efficiency for the removal of Zn2+ ions. The adsorption rate was so rapid that the equilibrium was achieved within 2 min. The isotherm adsorption data obeyed the Langmuir model, with a maximum adsorption capacity of 20.4 mg·g?1 and an adsorption equilibrium constant of 0.0314 L·mg?1. The thermodynamic calculations indicated that the adsorption process was exothermic and that the enthalpy change was ?5.68 kJ·mol?1.  相似文献   

4.
Polyacrylic acid hydrogel was synthesized by Free Radical polymerization and characterized by means of FTIR. The FTIR results show that the carboxylic groups in the complexes coordinated to the metal ions in the form of two dentate. The effects of contact time, solid/liquid ratio, pH value, and initial concentration on the adsorption of UO2 2+ ions onto polyacrylic acid were investigated. The adsorption of UO2 2+ ions was highly dependent on the initial pH of metal ions solution and initial metal ions concentration. The adsorption kinetic data indicated that the chemical adsorption was the swiftness processes, the adsorption equilibrium could be achieved within 15 min. And there are very good correlation coefficients of linearized equations for Freundlich model, which indicated that the sorption isotherm of the hydrogel for UO2 2+ can be fitted to the Freundlich model. It was found that the maximum adsorption quantity of UO2 2+ was 1,179 mg/g. After five times of repeated tests for the hydrogel it still remained its excellent adsorption.  相似文献   

5.
The copolymers of styrene and maleic anhydride resin (PSt/MA) was synthesized by free radical polymerization and characterized by means of FTIR. It is shown that the PSt/MA copolymer has rather strong coordination ability to UO2 2+ ions by chelation with the carboxylate group, and the microstructures of the U(VI)-PSt/MA complexes can be well controlled. The influence factors on UO2 2+ ions were also investigated and described in detail, such as contact time, solid/liquid ratio, pH value, ethanol content, and initial concentration. It was found that the maximum adsorption quantity of UO2 2+ was 831 mg/g. Experiments show that PSt/MA can recover UO2 2+ ions with high adsorption selectively from a simulated industry solution containing Ca2+ and Mg2+ as impurities. The adsorption kinetic data were best described by the pseudo-second-order equation, indicating that the chemical adsorption was the rate-limiting step. And there are very good correlation coefficients of linearized equations for Langmuir model, which indicated that the sorption isotherm of the PSt/MA for UO2 2+ can be fitted to the Langmuir model. After five times of repeated tests for the hydrogel it still remained its excellent adsorption.  相似文献   

6.
Chelation ion-exchange properties of copolymers prepared from salicylic acid, urea and formaldehyde by condensation in presence of acid catalyst were studied for Cu2+, Fe3+, UO2+, Mn2+,Zn2+ and Co2+ ions. A batch equilibration method was adopted to study the selectivity of metal ion uptake. This method involved the measurement of distribution of a given metal between the copolymer sample and a solution containing the metal ions. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for UO2 2+, Cu2+ and Fe3+ ions than Mn2+, Co2+ and Zn2+ ions.  相似文献   

7.
The polyethylene (PE) membrane was prepared by the radiation-induced grafting of acrylonitrile (AN) onto PE hollow fiber and by the subsequent amidoximation of cyano groups in poly-AN graft chains. The adsorption characteristics of the chelating hollow fiber membrane was examined as the solution of UO2 2+ permeated across the chelating hollow fiber membrane. The inner and outer diameter increased with an increasing grafting yield, whereas, the pure water flux and pore diameter decreased with an increasing grafting yield. The adsorption of UO2 2+ by the chelating hollow fiber membranes increased with an increasing amidoxime group. The adsorbed amount of UO2 2+ in the uranyl acetate solution was higher than that in the uranyl nitrate solution. The adsorbed amount of UO2 2+ is higher than that of Cu2+ when the solution of UO2 2+ and Cu2+ permeated across the chelating membrane, respectively. The adsorption characteristics of UO2 2+ by the amidoxime group-chelating fiber membrane in the presence of Na1+ and Ca2+ showed a high selectivity for UO2 2+ even though there was a high concen-tration of Na1+ and Ca2+ in the inlet solution.  相似文献   

8.
Co2+ and Zn2+ ions are adsorbed on cryptomelane-type MnO2 by exchange with surface protons and with structural ions (probably K+ and/or Mn2+) in the oxide. The latter sites are responsible for the much higher capacity to these cations, compared to Na+. At all pH values, two straight lines expressing the presence of mainly two groups of sites with distinctly different adsorption energies are located in the Langmuir plots for both Co2+ and Zn2+. The apparent capacities of the two groups increase with the increase of pH, indicating the involvement of protons in the adsorption process over the whole concentration range. The higher Co2+ capacity at relatively low pH, compared to the Zn2+ capacity, is probably due to a more exchange with the structural ions. Crytomelane type MnO2 seems to be a quite heterogenous ion adsorbent whose adsorption sites could be approximated to two groups only.  相似文献   

9.
《印度化学会志》2023,100(2):100924
A new modified material was synthesized and characterized as ethylene diamine modified (EA) Polyacrylamide (PAA)-Lignin (L). The adsorption features of EA modified PAA-L were studied for uranyl ions. The characterization experiments were evaluated by FT-IR spectroscopic techniques, scanning electron microscopy (SEM), and PZC analysis. Adsorption of UO22+ ions as a function of concentration, pH, temperature, and time of adsorption were studied. The adsorption phenomenon of UO22+ ions onto PAA-L-EA from aqueous medium was successfully evaluated by various equilibrium models such as Langmuir, Freundlich, and Dubinin-Radushkevich (DR). The (Qe) maximum adsorption capacity values for Langmuir model was calculated as 0.792 kg mol?1 by using experimental data. The constant values of thermodynamic parameters such as (ΔG°), (ΔH°) and (ΔS°) were calculated and it has observed that the mechanism of adsorption was found compatible with endothermic and spontaneous owing to increasing disorderliness at solution/solid system. The adsorption mechanism is compatible with Elovich and intraparticle diffusion models. The power of the interaction between modified lignin and uranyl ?on was explained in the light of Hard and Soft Acid-Base Principle.  相似文献   

10.
A series of 2D isomorphous MOFs [M (HBTC)(BMIOPE)·DMF·H2O]n (M = Zn ( 1 ), Zn0.7Co0.3 ( 2 ), Zn0.5Co0.5 ( 3 ), Zn0.3Co0.7 ( 4 ), Co ( 5 ), H3BTC = 1,3,5-benzenetricarboxylic acid, BMIOPE = 4,4′-bis(2-methylimidazol-1-yl)diphenyl ether) were synthesized to investigate the correction between the center metal ions and the photocatalytic behaviors. The photocatalytic results show that with the increase of Co2+ content, the photodegradation properties are continuously improved from 1 to 5 , which fully indicate that only changing metal ions could regulate the photodegradation properties. In detail, 1 is an inactive photocatalyst to degrade methylene blue (MB), while 5 exhibits preeminent photocatalytic properties under visible light irradiation. Moreover, 1 shows good selective sensing toward Fe3+, Cr3+, UO22+, CrO42− and Cr2O72− ions in aqueous solution. To the best of our knowledge, 1 is the first MOF example for the optical detection of Fe3+, Cr3+, UO22+, CrO42− and Cr2O72− ions in aqueous solution.  相似文献   

11.
The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO2+2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO2+2. The complex structure of polyethylene with three functional groups and UO2+2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy.  相似文献   

12.
Mössbauer effect technique has been used for the comparative study of Cu1?x Zn x Fe2O4 and Cu1?x Cd x Fe2O4 ( x = 0.0?1.0) ferrites. Both Zn2+ and Cd2+ cations are divalent, non-magnetic ions with different ionic radii. With the substitution of these non-magnetic cations the average internal magnetic field decreases and paramagnetic behavior is dominated at x = 0.7 in both series. It is observed that the occupancy of Cu2+ ions for tetrahedral site is not constant for all compositions but fluctuate between 8–15%. It is also found that Cu2+ ions have more preference for tetrahedral site in Cu-Zn system as compared to the Cu-Cd system. Zn2+ and Cd2+ both ions occupy tetrahedral site completely and form normal spinels for x = 1.0.  相似文献   

13.
In this study, we used a simple and rapid colourimetric reaction for visual sensing of Fe2+ and Pb2+ ions in water by employing nano-MnO2 as a natural oxidase mimic to respectively catalyse ABTS and TMB in citrate-phosphate buffer solution (C-PBS) at 25°C and pH 3.8. It was found that nano-MnO2 possessed highly oxidase-mimicking activity with the Km values of 0.030 and 0.027 toward ABTS and TMB, respectively, indicating TMB had a stronger affinity on nano-MnO2 than ABTS. Interestingly, the presence of 0.01 mmol·L?1 Fe2+/Pb2+ ion was able to significantly down-regulate the activity of MnO2 nanozyme in nano-MnO2-mediated ABTS reaction processes (P < 0.01), which mainly due to the strong adsorption of metal ion toward nano-MnO2 surface via the electrostatic attractions, thus leading to the passivation and inactivation of MnO2 nanozyme catalytic activity. Thereinto, Fe2+ reacted with multivalent manganese by oxidation-reduction, while Pb2+ was specifically adsorbed onto the surface of MnO2 nanozyme and formed complexes. Notably, only Fe2+ ion inhibited the activity of MnO2 nanozyme-TMB with a detection limit as low as 1.0 μmol·L?1. In MnO2 nanozyme-ABTS sensing systems, Fe2+ and Pb2+ ions detection limit of 0.5 and 2.0 μmol·L?1 were, respectively, achieved with a linear response range of 0–0.02 and 0–0.8 mmol·L?1, implying the developed MnO2 nanozyme-ABTS sensor was potentially applicable for the visual determination of Fe2+ and Pb2+ ions in water. In the real water samples, MnO2 nanozyme-ABTS achieved high accuracy (relative errors: 3.4?10.5%) and recovery (96?110%) for respective detection of Fe2+ and Pb2+ ions. The simple and rapid MnO2 nanozyme-ABTS sensing systems might provide a practical assay for visual detection of Fe2+ and Pb2+ ions in the environmental water samples.  相似文献   

14.
The scavenging of UO2 2+ using 4-sulfonic calix[6]arene in the presence of a strong adsorbent was studied as a function of pH. The adsorbent selected was goethite because of its strong affinity for UO2 2+ and its abundance in natural soils. In order to understand the underlying chemistry of the scavenging process, the adsorption of UO2 2+ and 4-sulfonic calix[6]arene onto goethite, respectively, and the extraction of adsorbed UO2 2+ from goethite surface were modeled using the triple-layer model. The model well explained the pH dependence of the adsorption and extraction processes. This work showed that maximum extraction was obtained around pH 10.5 in the presence of 12g/l goethite in the case of a 1:3T U(VI):T calixareneratio.  相似文献   

15.
This study investigated a new adsorbent prepared from lignin modified organoclay for the removal of Pb2+ and UO2 2+ from aqueous solutions. The characterization of new adsorbent was performed by FT-IR and XRD. Adsorption of Pb2+ and UO2 2+ species in aqueous solution as a function of ion concentration, pH, temperature and time of adsorption was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin-Radushkevich models. The monolayer adsorption capacities of organoclay–lignin were 0.12 mol kg?1 and 0.42 mol kg?1 for Pb2+ and UO2 2+, respectively. The experimental kinetic data were analyzed by using pseudo-second-order kinetic and intra-particle diffusion models. The proposed adsorption mechanism follows a pseudo-second-order kinetic and endothermic because of increasing disorderliness at adsorbate/adsorbent interface.  相似文献   

16.
Luminescent CdSe-ZnS quantum dots (QDs) were modified with bovine serum albumin (BSA) and used as selective copper ion probe. The fluorescence of the water-soluble QDs can be quenched only by Cu2+ and Fe3+ in physiological buffer solution. Approximate concentrations of other physiologically important cations, such as Zn2+, Na+ and K+ etc. have no effect on the fluorescence. Adding F to form the colorless complex FeF63− can eliminate the interference of Fe3+. The detection limit of Cu2+ ions was 10 nM. The results can be explained in terms of strong binding of Cu2+ onto the surface of CdSe resulting in a chemical displacement of Cd2+ ions and the formation of CuSe on the surface of the QDs.  相似文献   

17.
Polyacrylic acid, Chitosan and nanosilica particles composite (PCNS) was prepared for enrichment of U (VI) from aqueous solutions. Adsorption tests controlled by different parameters including contact time, pH, initial concentration of UO22+ and coexistence ions were examined. FTIR, SEM and EDX studies proved the formation of composite and confirmed efficient adsorption of UO22+ by PCNS. The experimental datas fit the Langmuir and pseudo-second-order models, the RL (0.115–0.645) indicates the adsorption of UO22+ onto PCNS are favorable. The value of qm (451.118 mg g?1) and adsorption–desorption experiments showed PCNS hydrogel can be reckoned as a high efficienct and sustainable material for removal of U (VI).  相似文献   

18.
Hexagonal tungsten oxide (hex-WO3) with exchangeable sodium and ammonium cations located in hexagonal channel was synthesized by a facile hydrothermal treatment of sodium tungstate dihydrate in concentrated HCl solution in the presence of ammonium sulfate. An attempt was made to assess the potential of hex-WO3 for the adsorption of Sr2+ ions from acidic radioactive waste solutions. Adsorption of Sr2+ reached equilibrium very quickly in 2 h in acidic aqueous solution. Maximum removal of Sr2+ ions occurred at pH 4. Equilibrium studies showed that the extent of Sr2+ ions uptake by hex-WO3 was better described by the Freundlich isotherm in comparison with the Langmuir model. The thermodynamic parameters showed that the adsorption of Sr2+ ions onto hex-WO3 was spontaneous and exothermic under the studied conditions.  相似文献   

19.
We prepared poly(N,N-diethylacrylamide-co-acrylic acid) (P(DEA-co-AA)) microgels which could efficiently remove UO2 2+ from aqueous solutions. In this study, the effect of adsorption parameters such as pH value, adsorbent dose, shaking time, and temperature has investigated. It is found that the pseudo-second-order model is more suitable for our experiment. The adsorption kinetic data indicated that the chemical adsorption was the swiftness processes, the adsorption equilibrium could be achieved within 30 min. And there are very good correlation coefficients of linearized equations for Langmuir isotherm model, which indicated that the sorption isotherm of the hydrogel for UO2 2+ can be fitted to the Langmuir isotherm model. The adsorption process was spontaneous (?G 0 < 0) and exothermic (?H 0 < 0). The adsorbed UO2 2+ can be desorbed effectively by 0.1 M HNO3 and the adsorption capacity is not significantly reduced after five cycles. Present study suggests that this P(DEA-co-AA) can be used as a potential adsorbent for sorption UO2 2+ and also provide a simple, fast separation method for removal of UO2 2+ ions from aqueous solution.  相似文献   

20.
Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO22+)‐specific 39E DNAzyme in the presence of Mg2+, Zn2+, Pb2+, or UO22+. At pH 5.5 and physiological ionic strength (100 mM Na+), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg2+ or Zn2+. However, no folding occurred in the presence of Pb2+ or UO22+; this is analogous to the “lock‐and‐key” catalysis mode first observed in the Pb2+‐specific 8–17 DNAzyme. However, Mg2+ and Zn2+ exert different effects on the 8–17 and 39E DNAzymes. Whereas Mg2+ or Zn2+‐dependent folding promoted 8–17 DNAzyme activity, the 39E DNAzyme folding induced by Mg2+ or Zn2+ inhibited UO22+‐specific activity. Group IIA series of metal ions (Mg2+, Ca2+, Sr2+) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr2+ (1.12 Å) is comparable to that of Pb2+ (1.20 Å), but contrary to Pb2+, Sr2+ induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb2+ and UO22+. Under low ionic strength (30 mM Na+), all four metal ions (Mg2+, Zn2+, Pb2+, and UO22+), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA‐backbone phosphates in addition to playing specific catalytic roles. Mg2+ at low (<2 mM ) concentration promoted UO22+‐specific activity, whereas Mg2+ at high (>2 mM ) concentration inhibited the UO22+‐specific activity. Therefore, the lock‐and‐key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock‐and‐key mode only at ionic strengths of 100 mM or greater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号