首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the ILs is discussed in detail. The viscosities mostly agree with values reported in the literature within the combined estimated expanded uncertainties ( k = 2) of the measurements while our density and interfacial tension data differ by more than +/-1% and +/-5%.  相似文献   

2.
Intramolecular photoinduced charge separation and recombination within the donor-acceptor molecule 4-(N-pyrrolidino)naphthalene-1,8-imide-pyromellitimide, 5ANI-PI, are studied using ultrafast transient absorption spectroscopy in the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [EMIM][Tf2N]. The rate constants of both photoinduced charge separation and charge recombination for 5ANI-PI in [EMIM][Tf2N] are comparable to those observed in pyridine, which has a static dielectric constant similar to that of [EMIM][Tf2N] but a viscosity that is nearly 2 orders of magnitude lower than that of [EMIM][Tf2N]. The electron-transfer dynamics of 5ANI-PI in [EMIM][Tf2N] are compared to those in pyridine as a function of temperature and are discussed in the context of recently reported ionic liquid solvation studies.  相似文献   

3.
Extraction of thiophene from cyclohexane, isooctane and toluene were performed using the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) at T=298.15 K. The liquid?Cliquid equilibrium (LLE) experiments were performed on three systems, namely: [EMIM][OAc]?Cthiophene?Ccyclohexane, [EMIM][OAc]?Cthiophene?Cisooctane and [EMIM][OAc]?Cthiophene?Ctoluene. The LLE data showed that [EMIM][OAc] has a higher selectivity at low concentration of thiophene and also showed that the hydrocarbon-rich phase is free of ionic liquid. This implies that there will be no cross contamination and the ionic liquid will be a non-pollutant in fuel after extraction. Further, the amount of hydrocarbon in the ionic-liquid-rich phase is very small. This implies that ionic liquid can be regenerated with negligible loss of fuel. LLE data was then correlated using the NRTL and UNIQUAC models. These showed root mean square deviation (RMSD) values of 0.82?% and 1.46?% for the isooctane system, 1.37?% and 1.57?% for the cyclohexane system and 1.39?% and 1.53?% for the toluene system.  相似文献   

4.
The interfacial structures of cyano-based room-temperature ionic liquids play a very important role in reducing friction. However, the presence of water impairs their tribological performance. The interfacial structures and friction forces of 1-ethyl-3-methylimidazolium dicyanamide, [EMIM][DCN], and the effect of water on these structures and forces were investigated using atomic force microscopy. In addition, the interaction of water and [EMIM][DCN] was evaluated using Fourier-transform infrared (FT-IR) spectroscopy. Multiple repulsive layers were observed in the [EMIM][DCN] solution. This solution showed low friction force because these repulsive layers worked as protective layers against friction. On the other hand, the specific repulsive layer characteristics of [EMIM][DCN] could not be observed in a [EMIM][DCN] + 2 wt% H2O solution. FT-IR results indicated that the layer structure of [EMIM][DCN] was disturbed by the addition of H2O. Therefore, the solution containing water exhibited a high friction force.  相似文献   

5.
The applicability of infrared (IR) spectroscopy for quantitative concentration measurements in mixtures of carbohydrates and ionic liquids (ILs) is investigated. The compound 1‐ethyl‐3‐methylimidazolium acetate, [EMIM][OAc]—an “enzyme‐friendly” ionic liquid with great application potential in the dissolution of various biomasses—is used as solvent in combination with alpha‐D ‐glucose. Our study establishes a new way to monitor the concentration of sugars in ILs, thus providing a convenient method to follow the kinetics of, for example, enzymatic reactions in [EMIM][OAc]. As a first step, we present the IR spectrum of pure [EMIM][OAc] (this constitutes the first vibrational study of this particular IL). Although numerous lines overlap in the fingerprint region of the spectrum, characteristic features can be assigned to the corresponding vibrational modes of both ions. Secondly, we study different mixtures of the IL with alpha‐D ‐glucose (in the concentration range: 0–20 mass % glucose) and analyze them by means of IR spectroscopy, followed by computational methods, thus demonstrating the great potential of this spectroscopic technique in quantitative measurements.  相似文献   

6.
Sol–gel transition behavior of ionic liquid gel based on poly (ethylene glycol) (PEG) and ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate [EMIM][EtSO4] has been investigated under the pressure up to 250 MPa. The Temperature versus Pressure phase diagram of PEG/[EMIM][EtSO4] gel is constructed, and it indicates that the melting point is an increasing function of pressure. Based on the phase diagram, the PEG/[EMIM][EtSO4] gels are prepared by cooling under the pressure of 300 MPa and atmospheric pressure, respectively. From the differential scanning calorimetry result of the recovered samples, it is found that PEG/[EMIM][EtSO4] gel prepared under high pressure has a higher crystallinity and smaller crystal size polymer network, comparing with under atmospheric pressure. The cyclic voltammograms and impedance spectra tests indicate that the PEG/[EMIM][EtSO4] gel prepared under high pressure exhibit higher ionic conductivity comparing with atmospheric pressure. It could be speculated these excellent properties might be attributed to the loose gel structure and high ionic density induced by high pressure.  相似文献   

7.
Vapor pressure data were measured for water, methanol and ethanol as well as their binary mixtures with an ionic liquid (IL) 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]) at varying temperature and IL-content ranging from mass fraction of 0.10–0.70 by a quasi-static method. The vapor pressure data for the IL-containing binary systems were correlated using NRTL equation with average absolute relative deviation (ARD) within 0.0076, and the binary NRTL parameters was used for predicting the vapor pressure of the IL-containing ternary systems with reasonable accuracy. In addition, the infinite activity coefficients of solvents in [EMIM][DMP] and isobaric vapor–liquid equilibrium for IL-containing ternary systems at 101.325 kPa and mass fraction of IL being 0.5 were predicted with the regressed NRTL parameters. The results indicate that ionic liquid [EMIM][DMP] can depress the volatility of the solvents of water, methanol and ethanol but to a varying degree, leading to the variation of relative volatility of a solvent and even removal of azeotrope for water–ethanol mixture.  相似文献   

8.
The density and surface tension of 1-ethyl-3-methylimidazolium methylsulphate, [EMIM][CH3SO4] ionic liquid have been measured from (283.15 to 333.15) K. The coefficient of thermal expansion was calculated from the experimental density results using an empirical correlation for T = (283.15-338.15) K. Molecular volume and standard entropies of [EMIM][CH3SO4] ionic liquid were obtained from the experimental density values. The surface properties, critical temperature and enthalpy of vaporization were also discussed. Density and surface tension have been measured over the whole composition range for [EMIM][CH3SO4] with alcohols (methanol, ethanol, 1-butanol) binary systems at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich-Kister equation to determine the fitting parameters and the root mean square deviations.  相似文献   

9.
Ionic liquids have been widely used as green alternative mobile phase additives to shield the residuals silanols groups and modify the stationary/mobile phase HPLC systems. The present study aimed to evaluate the performance of the ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM][BF4]) in producing extrapolated logkw indices suitable to substitute for octanol–water logP or logD values. The effect of [EMIM][BF4] was investigated for a set of basic and neutral drugs using two different columns, BDS and ABZ+. [EMIM][BF4] was added simply alone or in combination with n‐octanol and was compared with the conventional masking agent n‐decylamine. [EMIM][BF4] reduced the retention by suppressing silanophilic interactions, althoug to a lower extent than n‐decylamine. Addition of n‐octanol further decreased the retention by shielding silanol sites on BDS and/or interacting with polar groups through hydrogen bonding on ABZ+. Logkw/logD7.4 relationships proved moderate compared with those derived upon addition of n‐decylamine. They were considerably improved upon the introduction of protonated fraction F+ in the correlation, reflecting ion pair formation between the chaotropic anion [BF4] and the protonated basic compounds. In this aspect, the ionic liquid [EMIM][BF4], although efficient as a masking agent, cannot be recommended as mobile phase additive to reproduce octanol–water partitioning. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
制备了离子液体(1-乙基-3-甲基咪唑六氟磷酸 [EMIM][PF6])负载量不同的多孔纳米氧化硅(SiOx), 并采用差式扫描量热分析(DSC)、X射线衍射(XRD)、激光Raman光谱、傅里叶变换红外(FTIR)光谱分析等手段研究离子液体负载纳米氧化硅后的熔点变化及相行为. 研究表明负载于纳米氧化硅表面的离子液体熔点明显下降, 且负载于不同表面羟基含量的氧化硅表面熔点下降幅度不同. 纯离子液体[EMIM][PF6]熔点为62 ℃, 在纳米氧化硅表面负载量为35%时熔点为52 ℃, 比负载前下降10 ℃; 负载于另两种不同羟基含量的纳米氧化硅表面后熔点分别下降20和17 ℃. 而同一种纳米氧化硅(比表面积为640 m2·g-1)在负载量小于50%时, 熔点下降明显; 进一步增大负载量, 熔点逐渐趋于本体. XRD和Raman光谱分析显示, 离子液体负载于氧化硅表面后其衍射峰或吸收峰相对强度发生明显改变. 分析负载前后纳米氧化硅的结构变化, 推断离子液体熔点下降的主要原因是离子液体分子与纳米氧化硅表面之间存在强烈的界面相互作用, 而表面羟基的密度及比表面积是影响负载后[EMIM][PF6]离子液体相行为的主要因素.  相似文献   

11.
Density and viscosity were determined for the binary mixtures containing the ionic liquid N-octylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide ([C8iQuin][NTf2]) and 1-alcohol (1-butanol, 1-hexanol, and 2-phenylethanol) at five temperatures (298.15, 308.15, 318.15, 328.15, and 338.15) K and ambient pressure. The density and viscosity correlations for these systems were tested by an empirical second-order polynomial and by the Vogel–Fucher–Tammann equation. Excess molar volumes were described by the Redlich–Kister polynomial expansion. The density and viscosity variations with compositions were described by polynomials. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions. The surface tensions of pure ionic liquid and binary mixtures of [C8iQuin][NTf2] with 1-hexanol were measured at atmospheric pressure at three temperatures (298.15, 308.15, and 318.15) K. The surface tension deviations were calculated and correlated by the Redlich–Kister polynomial expansion. The surface thermodynamic functions such as surface entropy and enthalpy were derived from the temperature dependence of the surface tension values. The critical temperature, parachor, and speed of sound for pure ionic liquid were described. A qualitative analysis on these quantities in terms of molecular interactions is reported. The obtained results indicate that ionic liquid interactions with alcohols are strong dependent on the special trend of packing effects and hydrogen bonding of this ionic liquid with hydroxylic solvents. As previously observed, an increase by a 1-alcohol carbon chain length leads to lower interactions on mixing.  相似文献   

12.
Three different ionic liquids are investigated via atomistic molecular dynamics simulations using the force field of Lopes and PAdua (J. Phys. Chem. B 2006, 110, 19586). In particular, the 1-ethyl-3-methylimidazolium cation EMIM+ is studied in the presence of three different anions, namely, chloride Cl-, tetrafluoroborate BF(4)(-), and bis((trifluoromethyl)sulfonyly)imide TF2N-. In the focus of the present study are the static distributions of anions and cations around a cation as a function of anion size. It is found that the preferred positions of the anions change from being close to the imidazolium hydrogens to being above and below the imidazolium rings. Lifetimes of hydrogen bonds are calculated and found to be of the same order of magnitude as those of pure liquid water and of some small primary alcohols. Three kinds of short-range cation-cation orderings are studied, among which the offset stacking dominates in all of the investigated ionic liquids. The offset stacking becomes weaker from [EMIM][Cl] to [EMIM][BF4] to [EMIM][TF2N]. Further investigation of the dynamical behavior reveals that cations in [EMIM][TF2N] have a slower tumbling motion compared with those in [EMIM][Cl] and [EMIM][BF4] and that pure diffusive behavior can be observed after 1.5 ns for all three systems at temperatures 90 K above the corresponding melting temperatures.  相似文献   

13.
This article describes the temperature-induced phase transfer behavior of a series of thermosensitive polymer brush-grafted particles between water and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]). Six samples were made by surface-initiated atom transfer radical polymerization: silica particles grafted with poly(methoxypoly(ethylene glycol) methacrylate) (PPEGMMA) with two different molecular weights, poly(methoxytri(ethylene glycol) methacrylate) (PTEGMMA), poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA), and two copolymers of PEGMMA and TEGMMA with different compositions (P(PEGMMA-co-TEGMMA)-82 and P(PEGMMA-co-TEGMMA)-74). The cloud points of free PPEGMMA with M(n,SEC) of 23 and 40 kDa, P(PEGMMA-co-TEGMMA)-82, P(PEGMMA-co-TEGMMA)-74, and PTEGMMA in [EMIM][TFSI]-saturated water were 95, 94, 80, 72, and 43 °C, respectively. PDEGMMA was not soluble in the ionic liquid-saturated water. PPEGMMA brush-grafted particles moved spontaneously and completely from water to the [EMIM][TFSI] phase upon heating at 80 °C. When cooled to 22 °C, all particles returned to the water layer. From UV-vis absorbance measurements, the transfer temperature (T(tr)) of PPEGMMA-grafted particles from water to the ionic liquid was 42 °C. Thermodynamic analysis showed that the particle transfer was an entropically driven process. P(PEGMMA-co-TEGMMA)-82, P(PEGMMA-co-TEGMMA)-74, and PTEGMMA brush-grafted particles also underwent reversible and quantitative transfer between the two phases upon heating at 70 °C and cooling at 0 °C; their transfer temperatures from water to [EMIM][TFSI] were 36, 30, and 16 °C, respectively. T(tr) was a linear function of the cloud point of the corresponding free polymer in ionic liquid-saturated water. In contrast, PDEGMMA-grafted particles moved spontaneously to the ionic liquid layer upon heating but did not return to water even after prolonged stirring at 0 °C.  相似文献   

14.
Marked solubility differences of nicotine in the ionic liquids [C(2)mim][NTf(2)], [C(2)mim][EtOSO(3)], and [C(n)mim]Cl, 6 相似文献   

15.
Using molecular dynamics simulations, the melting points and liquid phase dynamic properties were studied for four alkyl-imidazolium-based ionic liquids, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-n-butyl-2,3-dimethylimidazolium hexafluorophosphate ([BMMIM][PF6]), 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF6]), and 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate ([EMMIM][PF6]), respectively. Experimentally it has been observed that the substitution of a methyl group for a hydrogen at the C2 position of the cation ring leads to an increase in both the melting point and liquid phase viscosity, contrary to arguments that had been made regarding associations between the ions. The melting points of the four ionic liquids were accurately predicted using simulations, as were the trends in viscosity. The simulation results show that the origin of the effect is mainly entropic, although enthalpy also plays an important role.  相似文献   

16.
New experimental data of densities and surface tensions are presented for the binary mixtures of the ionic liquid 1-ethyl-3- methyl imidazolium nitrate([EMIM]NO3) with methanol and ethanol.Measurements were performed at 298.15 K and atmospheric pressure,covering the whole composition range.Excess molar volumes VE and the surface tension deviations Sy have been determined.For the excess molar volumes of binary mixture,there is a region of negative VE at low IL mole fraction,passing through a minimum and then VE increases and becomes positive,showing maximum at higher IL mole fraction.It is shown that the surface tension deviations Sy of[EMIM]NO3 + methanol system are positive but those of[EMIM]NO3 + ethanol system are negative over the entire mole fraction range.  相似文献   

17.
This article reports on the synthesis of thermo- and pH-sensitive polymer-brush-grafted silica particles ("hairy" particles) and the study of their phase-transfer behavior between water and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIM][TFSA]), in response to temperature and pH changes. The hairy particles were made by the surface-initiated atom transfer radical polymerization of methoxytri(ethylene glycol) methacrylate (TEGMMA) and tert-butyl methacrylate with a molar ratio of 100:11 in the presence of a free initiator and the subsequent removal of tert-butyl groups. The cloud points (CPs) of poly(TEGMMA-co-methacrylic acid), obtained after the treatment of the free polymer with trifluoroacetic acid, in both water and [EMIM][TFSA]-saturated water increased with the increase in pH and can be tuned over a wide temperature range. The hairy particles moved spontaneously from the aqueous phase to the [EMIM][TFSA] phase upon heating at 80 °C and returned to the aqueous layer upon cooling at 10 °C. This process can be repeated many times regardless of whether the pH of the aqueous phase is 2.99, 5.00, or 7.02. UV-vis absorbance measurements showed that the transfer temperature (T(tr)) of hairy particles from water to [EMIM][TFSA] increased with the increase in the pH of the aqueous phase. A linear relationship was observed between the T(tr) of hairy particles and the CP of the corresponding free polymer. By taking advantage of the tunability of the T(tr) of hairy particles, we demonstrated the pH-driven reversible transfer of hairy particles at a fixed temperature by changing the pH of the aqueous phase and multiple phase-transfer processes by controlling both the temperature and pH.  相似文献   

18.
A novel biocomposite film based on hyaluronic acid (HA) and hydrophilic room temperature ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate ([EMIM][BF4]) was explored. Here, HA was used as a binder to form [EMIM][BF4]-HA composite film and help [EMIM][BF4] to attaching on glass carbon electrode (GCE) surface, while doping [EMIM][BF4] in HA can effectively reduce the electron transfer resistance of HA. The composite film can be readily used as an immobilization matrix to entrap myoglobin (Mb). A pair of well-defined and quasi-reversible redox peaks of Mb was obtained at the Mb-[EMIM][BF4]-HA composite film modified GCE (Mb-[EMIM][BF4]-HA/GCE) through direct electron transfer between Mb and the underlying electrode. The Mb-[EMIM][BF4]-HA/GCE showed an excellent electrocatalytic activity toward the reduction of H2O2. Based on the [EMIM][BF4]-HA biocomposite film, a third-generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

19.
The group contribution equation of state (GC-EOS) was applied to predict the phase behavior of binary systems of ionic liquids of the homologous families 1-alkyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate with CO2. Pure group parameters for the new ionic liquid functional groups [-mim][PF6] and [-mim][BF4] and interaction parameters between these groups and the paraffin (CH3, CH2) and CO2 groups were estimated. The GC-EOS extended with the new parameters was applied to predict high-pressure phase equilibria in binary mixtures of the ionic liquids [emim][PF6], [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], and [omim][BF4] with CO2. The agreement between experimental and predicted bubble point data for the ionic liquids was excellent for pressures up to 20 MPa, and even for pressures up to about 100 MPa, the agreement was good. The results show the capability of the GC-EOS to describe phase equilibria of systems consisting of ionic liquids.  相似文献   

20.
We describe polymersomes with ionic liquid interiors dispersed in water. The vesicles are prepared via a simple and spontaneous migration of poly(butadiene-b-ethylene oxide) (PB-PEO) block copolymer vesicles from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), to water at room temperature. As PB is insoluble in both water and [EMIM][TFSI] and PEO is well solvated in both media, the vesicles feature a PB membrane with PEO brushes forming both interior and exterior coronas. The robust and stable PB-PEO vesicles migrate across the liquid-liquid interface with their ionic liquid interiors intact and form a stabilized aqueous dispersion of vesicles enclosing microscopic ionic liquid pools. The nanostructure of the vesicles with ionic liquid interiors dispersed in water is characterized by direct visualization using cryogenic transmission electron microscopy. Upon heating, the vesicles can be quantitatively transferred back to [EMIM][TFSI], thus enabling facile recovery. The reversible transport capability of the shuttle system is demonstrated by the use of distinct hydrophobic dyes, which are selectively and simultaneously loaded in the vesicle membrane and interior. Furthermore, the fluorescence of the loaded dyes in the vesicles enables probing of the microenvironment of the vesicular ionic liquid interior through solvatochromism and direct imaging of the vesicles using laser scanning confocal microscopy. This vesicle system is of particular interest as a nanocarrier or nanoreactor for reactions, catalysis, and separations using ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号