首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have demonstrated functional optical coherence tomography (fOCT) for neural imaging by detecting scattering changes during the propagation of action potentials through neural tissue. OCT images of nerve fibers from the abdominal ganglion of the sea slug Aplysia californica were taken before, during, and after electrical stimulation. Images acquired during stimulation showed localized reversible increases in scattering compared with those acquired before stimulation. Motion-mode OCT images of nerve fibers showed transient scattering changes from spontaneous action potentials. These results demonstrate that OCT is sensitive to the optical changes in electrically active nerve fibers.  相似文献   

2.

Background  

Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats.  相似文献   

3.
孙直申  刘国强  夏慧 《中国物理 B》2017,26(12):124302-124302
Lorentz force electrical impedance tomography(LFEIT) combines ultrasound stimulation and electromagnetic field detection with the goal of creating a high contrast and high resolution hybrid imaging modality. In this study, pulse compression working together with a linearly frequency modulated ultrasound pulse was investigated in LFEIT. Experiments were done on agar phantoms having the same level of electrical conductivity as soft biological tissues. The results showed that:(i) LFEIT using pulse compression could detect the location of the electrical conductivity variations precisely;(ii)LFEIT using pulse compression could get the same performance of detecting electrical conductivity variations as the traditional LFEIT using high voltage narrow pulse but reduce the peak stimulating power to the transducer by 25.5 dB;(iii)axial resolution of 1 mm could be obtained using modulation frequency bandwidth 2 MHz.  相似文献   

4.
We report electrical transport experiments, using the phenomenon of electrical breakdown to perform thermometry, that probe the thermal properties of individual multiwalled carbon nanotubes. Our results show that nanotubes can readily conduct heat by ballistic phonon propagation. We determine the thermal conductance quantum, the ultimate limit to thermal conductance for a single phonon channel, and find good agreement with theoretical calculations. Moreover, our results suggest a breakdown mechanism of thermally activated C-C bond breaking coupled with the electrical stress of carrying approximately 10(12) A/m2. We also demonstrate a current-driven self-heating technique to improve the conductance of nanotube devices dramatically.  相似文献   

5.
Insidious experimental artifacts and invalid theoretical assumptions complicate the comparison of numerical predictions and observed data. Such difficulties are particularly troublesome when studying electrical stimulation of the heart. During unipolar stimulation of cardiac tissue, the artifacts include nonlinearity of membrane dyes, optical signals blocked by the stimulating electrode, averaging of optical signals with depth, lateral averaging of optical signals, limitations of the current source, and the use of excitation-contraction uncouplers. The assumptions involve electroporation, membrane models, electrode size, the perfusing bath, incorrect model parameters, the applicability of a continuum model, and tissue damage. Comparisons of theory and experiment during far-field stimulation are limited by many of these same factors, plus artifacts from plunge and epicardial recording electrodes and assumptions about the fiber angle at an insulating boundary. These pitfalls must be overcome in order to understand quantitatively how the heart responds to an electrical stimulus. (c) 2002 American Institute of Physics.  相似文献   

6.
This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.  相似文献   

7.
Pitch perception by cochlear implant subjects   总被引:9,自引:0,他引:9  
Direct electrical stimulation of the auditory nerve can be used to restore some degree of hearing to the profoundly deaf. Percepts due to electrical stimulation have characteristics corresponding approximately to the acoustic percepts of loudness, pitch, and timbre. To encode speech as a pattern of electrical stimulation, it is necessary to determine the effects of the stimulus parameters on these percepts. The effects of the three basic stimulus parameters of level, repetition rate, and stimulation location on subjects' percepts were examined. Pitch difference limens arising from changes in rate of stimulation increase as the stimulating rate increases, up to a saturation point of between 200 and 1000 pulses per second. Changes in pitch due to electrode selection depend upon the subject, but generally agree with a tonotopic organization of the human cochlea. Further, the discriminability of such place-pitch percepts seems to be dependent on the degree of current spread in the cochlea. The effect of stimulus level on perceived pitch is significant but is highly dependent on the individual tested. The results of these experiments are discussed in terms of their impact on speech-processing strategies and their relevance to acoustic pitch perception.  相似文献   

8.
We present a unified theory for the longitudinal dynamic response of a stiff polymer in solution to various external perturbations (mechanical excitations, hydrodynamic flows, electrical fields, temperature quenches, etc.) that can be represented as sudden changes of ambient/boundary conditions. The theory relies on a comprehensive analysis of the nonequilibrium propagation and relaxation of backbone stresses in a wormlike chain. We recover and substantially extend previous results based on heuristic arguments. New experimental implications are pointed out.  相似文献   

9.
Passive electrical stimulation activates various human somatosensory cortical systems including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII) and bilateral insula. The effect of stimulation frequency on blood oxygenation level-dependent (BOLD) activity remains unclear. We acquired 3-T functional magnetic resonance imaging (fMRI) in eight healthy volunteers during electrical median nerve stimulation at frequencies of 1, 3 and 10 Hz. During stimulation BOLD signal changes showed activation in the contralateral SI, bilateral SII and bilateral insula. Results of fMRI analysis showed that these areas were progressively active with the increase of rate of stimulation. As a major finding, the contralateral SI showed an increase of peak of BOLD activation from 1 to 3 Hz but reached a plateau during 10-Hz stimulation. Our finding is of interest for basic research and for clinical applications in subjects unable to perform cognitive tasks in the fMRI scanner.  相似文献   

10.
本文使用定容圆柱形燃烧弹,在初始温度373 K和初始压力1、2、5、10 atm的条件下,对当量比从0.7到1.5的1-庚烯/空气混合物的层流火焰传播进行了研究.利用记录的纹影图像处理得到层流火焰传播速度和马克斯坦长度.基于先前报道的1-己烯燃烧反应动力学模型,发展了1-庚烯的模型.该模型验证了本工作测量的1-庚烯层流火焰传播速度数据及文献中的1-庚烯着火延迟时间数据.通过开展敏感性分析和路径分析,帮助理解了1-庚烯在不同压力下的高温化学及其对层流火焰传播的影响.另外,比较了1-庚烯/空气和先前报道的正庚烷/空气的层流火焰传播.由于更强的放热性及反应活性,1-庚烯/空气的层流火焰传播速度在绝大多数条件下均快于正庚烷/空气的结果.  相似文献   

11.
Keener JD  Chalut KJ  Pyhtila JW  Wax A 《Optics letters》2007,32(10):1326-1328
We present here the results of a numerical study on light scattering from nonspherical particles with relevance to detecting precancerous states in epithelial tissues. In previous studies of epithelial cell nuclei, the experimental light scattering data have been analyzed by comparison with Mie theory. However, given the spheroidal shape of many cell nuclei, the validity of this assumption demands a thorough investigation. We investigate this assumption by using the T-matrix method to model light scattered from spheroids with parameters relevant to epithelial cell nuclei. In our previous studies, we have developed a data analysis procedure that extracts the oscillatory component of the angular-scattering distribution for an ensemble of epithelial cell nuclei for comparison with Mie theory. We demonstrate that application of our analysis procedure to the predictions of the T-matrix method for spheroids, oriented such that their axis of symmetry is aligned with the incident light propagation direction, generally yields the spheroid dimension that is transverse to the incident light propagation direction with subwavelength accuracy.  相似文献   

12.
Breakdown and pre‐breakdown cause extensive damage in dielectric oils used in power systems subjected to high voltages. Consequently, several research works are devoted to these phenomena. Related investigations are made very difficult by the numerous influencing parameters and the large number of characteristics of these phenomena. The main goal of the present work was to establish a new electrical model that describes the propagation of streamers in liquid dielectrics for a point‐plane configuration subjected to high‐voltage fields. The novelty consists in the presence of an inductance in the equivalent electrical circuit, which represents the dielectric during the partial discharges characterized by fast variations of current. Criticisms were first made concerning previous electrical models that show some disadvantages. The developed model consists of a series RLC circuit whose element values change during propagation. In particular, the value of the resistance decreases in anticipation of breakdown. The simulation of the developed model gave satisfactory results, similar to experimental ones. For instance, the influence of electrical and geometrical parameters on the current pulses amplitude as well as on the streamers propagation velocity and the quantity of charge and the energy injected were studied. Good agreement was also obtained between the obtained results and experimental ones, which reinforces the validity of the model.  相似文献   

13.
Photon scattering is known to distort the fluorescence signals recorded from optically mapped cardiac tissue. However, the contribution of the parameters which define the optical detection set-up has not been assessed. In this study, Monte Carlo (MC) simulations of photon scattering within ventricular tissue are combined with a detailed model of a tandem-lens optical detection apparatus to characterise (i) the spatial origin upon emission of photons recorded in voltage-sensitive fluorescence measurements of cardiac electrical activity (using the fluorescent dye di-4-ANEPPS) and how this affects signal distortion, and (ii) the role the detector characteristics could play in modulating signal distortion during uniform illumination and photon emission from tissue depth. Results show that, for the particular excitation/emission wavelengths considered (488 nm and 669 nm, respectively), the dimensions of the scattering volume during uniform illumination extend around 3 times further in the surface recording plane than in depth. As a result, fluorescence recordings during electrical propagation are more distorted when transmembrane potential levels differ predominantly in the surface plane than in depth. In addition, MC simulation results show that the spatial accuracy of the fluorescence signal is significantly limited due to photon scattering, with only a small fraction of the recorded signal intensity originating from tissue beneath the pixel (approximately 11% for a 0.25×0.25 mm pixel). Increasing pixel size increases this fraction, however, it also results in an increase in the scattering volume dimensions, thus reducing the spatial resolution of the optical system, and increasing signal distortion. MC simulations also demonstrate that photon scattering in cardiac tissue limits the ability of optical detection system tuning in accurately locating fluorescent emission from depth. Specifically, our results prove that the focal plane depth that yields maximum signal intensity provides an underestimation of the emission depth. In conclusion, our study demonstrates the potential of MC simulations of photon scattering in guiding the design of optical mapping set-ups to optimise performance under diverse experimental conditions.  相似文献   

14.
江怡帆  陈长水  刘荣廷  刘颂豪 《光学学报》2012,32(10):1017001-202
基于腕部手厥阴心包经循行区域的解剖结构,建立了腕部手厥阴心包经和旁开非经络线区域组织光传输结构的简化模型,并利用蒙特卡罗模拟的方法分别模拟了光在腕部手厥阴心包经、相邻肌腱以及旁开非经络线上的光传输特性。模拟结果表明,光沿腕部手厥阴心包经呈优势传输,与本实验室之前实验所得的结果相一致。分别计算了三个模型中各层的光通量情况,计算结果表明,腕部心包经循行区域的光传输特性主要受该区域的底层结构和底层组织成分影响,光在底层结构中也是沿腕部心包经呈优势传输的,并且该优势传输的现象与腕部心包经底层的筋膜间隙结构有关。  相似文献   

15.
Previous functional magnetic resonance imaging (MRI) studies using extended visual stimulation have reported disparate results. Two studies have shown that blood oxygen level dependent (BOLD) contrast decays over time which is cited as evidence of recoupling between oxygen utilisation and cerebral blood flow during stimulus presentation. These findings have serious implications for the design of functional MRI experiments because they raise the possibility that BOLD contrast may not accurately reflect neuronal activity. Another study reported no decay of BOLD contrast. These studies used different visual stimuli and imaging techniques. We have performed a series of experiments, using different MRI techniques (echo-planar imaging and fast low angle shot) and two different visual stimuli to assess which of these factors may explain the previous results. In all of our experiments the signal time course from areas of significant activation remained largely elevated throughout the duration of stimulation and this is not affected by the imaging method used. Our data, in accordance with that of Bandettini et al., suggest that recoupling between blood flow and oxygen extraction is not a general phenomenon in the human brain when visual stimuli are presented for an extended time.  相似文献   

16.
A modification of the simplified FitzHugh-Nagumo (FN) equations is proposed for introducing a residual component of the slow variable, which determines the restitution of action potential duration (APD) also known as the interval-excitation duration relationship. The three-step-wise approximation of ε(E) which is widely used in current publications is replaced in a new model by a four-step approximation. This change is used for studying by computer simulation the effects of APD restitution properties independently of the APD and refractory period on 2D wave propagation in an isotropic matrix (made by 128 × 128 nodes). The method for fitting the model to the given experimental restitution data (obtained from myocardial cells) is presented. The computer simulations implemented on a massively parallel computer (Connection Machine) showed at least three important qualitative distinctions in behavior which demonstrate the effect of APD restitution: changes in the speed and wavelength of propagated waves with the period of stimulation, non-stationary propagation of spiral waves, and site-specific induction of spiral waves with premature stimulation not on the tail of the previous wave. Quantitative effects of differing restitution properties are expressed in the size and location of a window of vulnerability in 2D excitable media. These windows are characterized by the appearance of single and double spiral waves in response to premature stimulation applied inside the window. Thus the APD restitution incorporated in the FN model produces a significant effect on the formation and propagation of spiral waves.  相似文献   

17.
《Nuclear Physics B》1984,242(2):542-546
We define a subtraction of infinities appearing in the Lorentz non-invariant (LNI) renormalization of the electron kinetic term. This makes our previous model of LNI more precise. A relic of LNI appearing in the low-energy electron propagation is calculated, which modifies the Dirac equation as suggested in our previous paper.  相似文献   

18.
Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behave over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had functional magnetic resonance imaging scans while receiving said stimulations for seven runs. Our results show that the blood oxygen level-dependent (BOLD) signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed.  相似文献   

19.
Using the direct soliton perturbation theory, we investigate the evolution of soliton parameters and the firstorder correction of bright soliton in a system with linear and nonlinear gain (or loss) and spectral filtering in a comprehensive way. The results obtained by means of our analytic method are consistent with numerical simulations. It is also found that the stable soliton propagation which has been investigated in a previous report by others is the limit case of our results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号