首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bose condensation of spatially indirect (dipolar) excitons in a wide single quantum well in an electric field transverse to the heterolayers is analyzed. Voltage is applied between a metallic film on the surface (Schottky gate) and a conducting electron layer inside a heterostructure (integrated electrode). The excitation of dipolar excitons and observation of their luminescence are performed through circle windows in a metallic mask 5 μm in diameter. Excitons are collected in a ring lateral trap, which is formed along the window perimeter owing to the strongly inhomogeneous electric field. When the critical condensation conditions in pump and temperature are reached, a narrow line of dipolar excitons corresponding to the exciton condensate appears stepwise in the luminescence spectrum. Under these conditions, a spatially periodic structure of equidistant luminescence spots appears in the luminescence pattern that is observed through a window with a resolution of about 1 μm and is selected by means of an interference filter. An in situ optical Fourier transform of spatially periodic structures from the real space to the k space is derived. The resulting Fourier transforms reproducing the pattern of the luminescence intensity distribution in the far field exhibit the result of the destructive and constructive interference, as well as the fact that the luminescence is directed along the normal to the heterolayers. These results are consequences of the large-scale coherence of the condensed exciton state in the ring lateral trap. Direct measurements of double-beam interference from pairs of luminescence spots in the ring show that the spatial coherence length is no less than 4 μm. Such a large scale means that the experimentally observed periodic luminescence structures are described by a common wavefunction under the condition of the Bose condensation of dipolar excitons.  相似文献   

2.
A two-dimensional mesoscopic Bose system of dipoles in a 2D trap is considered using computer simulation by the quantum path-integral Monte Carlo method. The model describes a rarefied system of spatially indirect excitons in a confining potential. Bose condensation in the system and its superfluid and structural properties are studied over a wide range of interparticle spatial correlations, from an almost ideal Bose gas to the regime of a strongly correlated system. It is found that, at strong interparticle spatial correlations, particles in the condensate form a crystal-like structure. In this case, the spatial correlations of particles in the condensate are less pronounced than the correlations of noncondensed particles. The effect of recurrent crystallization is observed in the regime of strong interparticle correlations.  相似文献   

3.
Bose systems, subject to the action of external random potentials, are considered. For describing the system properties, under the action of spatially random potentials of arbitrary strength, the stochastic mean-field approximation is employed. When the strength of disorder increases, the extended Bose-Einstein condensate fragments into spatially disconnected regions, forming a granular condensate. Increasing the strength of disorder even more transforms the granular condensate into the normal glass. The influence of time-dependent external potentials is also discussed. Fastly varying temporal potentials, to some extent, imitate the action of spatially random potentials. In particular, strong time-alternating potential can induce the appearance of a nonequilibrium granular condensate.  相似文献   

4.
E. A. Titov 《Laser Physics》2009,19(3):516-524
A system of equations for the density matrix is derived to describe the condensate and quasi-particles of a weakly nonideal spatially homogeneous Bose gas. The equations are used to find the distribution function of the number of particles and the condensate coherence time. A numerical estimate is obtained for a temperature that is significantly lower than the transition temperature. Original Text ? Astro, Ltd., 2009.  相似文献   

5.
Ruban  V. P. 《JETP Letters》2021,113(12):814-818
JETP Letters - A spatially inhomogeneous, trapped two-component Bose–Einstein condensate of cold atoms in the phase separation mode has been numerically simulated. It has been demonstrated...  相似文献   

6.
Our realistic numerical results show that the fundamental and higher-order quantum resonances of the delta-kicked rotor are observable in state-of-the-art experiments with a Bose condensate in a shallow harmonic trap, kicked by a spatially periodic optical lattice. For stronger confinement, interaction-induced destruction of the resonant motion of the kicked harmonic oscillator is predicted.  相似文献   

7.
Correlations of the luminescence intensity (the second-order correlation function g (2)(τ)), where τ is the delay time between the photons detected in pairs) under the conditions of the Bose-Einstein condensation (BEC) of dipolar excitons has been studied in a temperature range of 0.45–4.2 K. Photoexcited dipolar excitons have been accumulated in a lateral trap in a GaAs/AlGaAs Schottky diode with a 25-nm wide single quantum well with an electric bias applied across the heterolayers. Two-photon correlations have been measured with the use of a two-beam intensity interferometer with a time resolution of }~0.4 ns according to the well-known classical Hanbury-Brown-Twiss scheme. The photon bunching has been observed at the onset of Bose-Einstein condensation manifested by the appearance of a narrow exciton condensate line in the luminescence spectrum at an increase in the optical pumping (the line width near the threshold is ?200 μeV). At the same time, the two-photon correlation function itself obeys the super-Poisson distribution, g (2)(τ) > 1, at time scale τc ? 1 ns of the system coherence. The photon bunching is absent at a pumping level substantially below the condensation threshold. The effect of bunching also decreases at pumping significantly above the threshold, when the narrow exciton condensate line starts to dominate in the luminescence spectra, and finally disappears with the further increase in the optical excitation. In this region, the distribution of pair photon correlations is a Poisson distribution manifesting the united quantum coherent state of the exciton condensate. Under the same conditions, the first-order spatial correlation function g (1)(r) determined from the interference pattern of the luminescence signals from the spatially separated parts of the condensate at constant pumping remains noticeable at distances of no less than 4 μm. The discovered effect of photon bunching is very sensitive to temperature and decreases by several times with a temperature increase in the range of 0.45–4.2 K. Assuming that the luminescence of the dipolar excitons directly reflects the coherence properties of the gas of interacting excitons, the discovered photon bunching at the onset of condensation, where the fluctuations of the exciton density and, consequently, of the luminescence intensity are most significant, indicates a phase transition in the interacting Bose gas of excitons, which is an independent way of detecting the Bose-Einstein condensation of excitons.  相似文献   

8.
A. V. Chaplik 《JETP Letters》2016,104(11):791-795
The temperature of Bose–Einstein condensation and the fraction of particles in a condensate for a system of spatially indirect dipole excitons in an electrostatic ring trap have been found. If only levels of the radial motion close to the bottom of the potential well of the trap are populated considerably, the oscillatory model of the single-particle spectrum is applicable. In this case, even the strong exciton–exciton interaction can be taken into account.  相似文献   

9.
Superfluids can transport heat via simultaneous opposite flows of their spatially interpenetrating condensate and noncondensate components. While this internal convection is usually described within Landau's phenomenological two-fluid hydrodynamics, we apply quantum kinetic theory to a dilute Bose gas held between thermal reservoirs at different temperatures and show that the phenomenon also appears in collisionless kinetic regimes and should be directly observable in currently feasible experiments on trapped ultracold vapors.  相似文献   

10.
The lifetimes (damping) of one-body and collective excitations in a hybrid system consisting of spatially separated layers of a two-dimensional electron gas and a gas of indirect excitons have been calculated at zero temperature in the presence of the Bose-Einstein condensate of excitons. It has been shown that the electron-exciton interaction leads to a considerable shortening of the lifetime of electrons as compared to the electron-electron interaction and to the appearance of a nonzero (linear in the wave vector) damping of plasmons. The interaction of the exciton Bose gas with the electron layer induces damping of Bogoliubov phonons in the exciton Bose gas, which is, however, much lower than their intrinsic (Belyaev) damping.  相似文献   

11.
V. P. Ruban 《JETP Letters》2017,105(7):458-463
The dynamics of interacting quantum vortices in a quasi-two-dimensional spatially inhomogeneous Bose–Einstein condensate, whose equilibrium density vanishes at two points of the plane with a possible presence of an immobile vortex with a few circulation quanta at each point, has been considered in a hydrodynamic approximation. A special class of density profiles has been chosen, so that it proves possible to calculate analytically the velocity field produced by point vortices. The equations of motion have been given in a noncanonical Hamiltonian form. The theory has been generalized to the case where the condensate forms a curved quasi-two-dimensional shell in the three-dimensional space.  相似文献   

12.
We consider the formation of entangled quantum states for an atomic Bose condensate interacting with an external electromagnetic field in a single-particle state under conditions of change in various regimes for exchange interaction processes. These states of the Bose system have high phase coherence and are accompanied by the generation of squeezed states of a new type in terms of the parameters defined by a combination of transition operators for the condensate atoms and external-field photons with an appropriate polynomial deformation of the algebra SU(2). We show that localized quantum structures corresponding to stable elementary excitations of the atoms and the field in the condensate can be formed in principle. We also analyze the purely quantum effects of collapse and revival for the level populations of the Bose condensate and the change in atomic statistics as well as determine the conditions for the formation of superstructure of these unsteady states for the Bose system.  相似文献   

13.
Bose–Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose–Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose–Einstein condensate. We also elaborate on the theoretical framework for atomic Bose–Einstein condensation, which includes statistical mechanics and the Gross–Pitaevskii equation. As an extension, we discuss Bose–Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck’s law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.  相似文献   

14.
A system of interacting, spatially separated excitons and electrons is examined in the presence of a Bose condensate of excitons. The kinetic properties of the system that are governed by the interaction of excitations in the exciton subsystem with electrons are investigated. It is shown that a nonequilibrium distribution of excitations in the exciton subsystem gives rise to an induced electron current. Experimental observation of the kinetic phenomena described can provide new information on the exciton phase state. Zh. éksp. Teor. Fiz. 116, 1440–1449 (October 1999)  相似文献   

15.
JüRG FR?HLICH  ZHOU GANG 《Pramana》2012,78(6):865-874
We discuss the transport of a tracer particle through the Bose?CEinstein condensate of a Bose gas. The particle interacts with the atoms in the Bose gas through two-body interactions. In the limiting regime where the particle is very heavy and the Bose gas is very dense, but very weakly interacting (??mean-field limit??), the dynamics of this system corresponds to classical Hamiltonian dynamics. We show that, in this limit, the particle is decelerated by emission of gapless modes into the condensate (Cerenkov radiation). For an ideal gas, the particle eventually comes to rest. In an interacting Bose gas, the particle is decelerated until its speed equals the propagation speed of the Goldstone modes of the condensate. This is a model of ??Hamiltonian friction??. It is also of interest in connection with the phenomenon of ??decoherence?? in quantum mechanics. This note is based on work we have carried out in collaboration with D Egli, I M Sigal and A Soffer.  相似文献   

16.
Within the self-consistent Hartree–Fock approximation, the equilibrium weakly nonideal Bose gas with a delta-shaped interaction potential in the presence of the Bose–Einstein condensate is considered without using quasi-averages. On this basis, using the virial theorem and diagram techniques of the perturbation theory for the equilibrium system in a macroscopic volume, the equation of state providing the isothermal compressibility finiteness, including the Bose–Einstein condensate domain of existence, is obtained.  相似文献   

17.
A strongly interacting Bose gas in an optical lattice is studied using a hard‐core interaction. Two different approaches are introduced, one is based on a spin‐1/2 Fermi gas with attractive interaction, the other one on a functional integral with an additional constraint (slave‐boson approach). The relation between fermions and hard‐core bosons is briefly discussed for the case of a one‐dimensional Bose gas. For a three‐dimensional gas we identify the order parameter of the Bose‐Einstein condensate through a Hubbard‐Stratonovich transformation and treat the corresponding theories within a mean‐field approximation and with Gaussian fluctuations. This allows us to evaluate the phase diagram, including the Bose‐Einstein condensate and the Mott insulator, the density‐density correlation function, the static structure factor, and the quasiparticle excitation spectrum. The role of quantum and thermal fluctuations are studied in detail for both approaches, where we find good agreement with the Gross‐Pitaevskii equation and with the Bogoliubov approach in the dilute regime. In the dense regime, which is characterized by the phase transition between the Bose‐Einstein condensate and the Mott insulator, we discuss a renormalized Gross‐Pitaevskii equation. This equation can describe the macroscopic wave function of the Bose‐Einstein condensate in the dilute regime as well as close to the transition to the Mott insulator. Finally, we compare the results of the attractive spin‐1/2 Fermi gas and those of the slave‐boson approach and find good agreement for all physical quantities.  相似文献   

18.
19.
We study the production of an atom laser from a Bose–Einstein condensate using radio-frequency out-coupling. Single frequency coupling from the Bose–Einstein condensate leads to unstable production of an atom laser due to the extreme sensitivity of this process to magnetic field fluctuations. The extent of this experimental instability is quantified. Stable, repeatable production of an atom laser is achieved by the frequency modulation of the coupling, which forms a frequency comb across the condensate. Different regimes of modulated coupling are discussed. In addition the coupling of atoms into a weakly trapping state is studied. The oscillation frequency of this state in the vertical direction is measured. Preliminary results indicating qualitative difference between condensate and thermal cloud coupling are presented.  相似文献   

20.
It is demonstrated that the heat capacity of an ideal Bose gas at constant pressure increases infinitely when its temperature approaches the Bose condensation temperature from above and is infinite for the phase with a Bose condensate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号