首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cardiac magnetic resonance imaging (CMR) can accurately determine infarct size. Prior studies using indirect methods to assess infarct size have shown that patients with larger myocardial infarctions have a worse prognosis than those with smaller myocardial infarctions.

Objectives

This study assessed the prognostic significance of infarct size determined by CMR.

Methods

Cine and contrast CMR were performed in 100 patients with coronary artery disease (CAD) undergoing routine cardiac evaluation. Infarct size was determined by planimetry. We used Cox proportional hazards regression analyses (stepwise forward selection approach) to evaluate the risk of all-cause death associated with traditional cardiovascular risk factors, symptoms of heart failure, medication use, left ventricular ejection fraction, left ventricular mass, angiographic severity of CAD and extent of infarct size determined by CMR.

Results

Ninety-one patients had evidence of myocardial infarction by CMR. Mean follow-up was 4.8±1.6 years after CMR, during which time 30 patients died. The significant multivariable predictors of all-cause mortality were extent of myocardial infarction by CMR, extent of left ventricular systolic dysfunction, symptoms of heart failure, and diabetes mellitus (P<.05). The presence of infarct greater than or equal to 24% of left ventricular mass and left ventricular ejection fraction less than or equal to 30% were the most optimal cut-off points for the prediction of death with bivariate adjusted hazard ratios of 2.11 (95% confidence interval 1.02-4.38) and 4.06 (95% confidence interval 1.73-9.54), respectively.

Conclusions

The extent of myocardial infarction determined by CMR is an independent predictor of death in patients with CAD.  相似文献   

2.

Purpose

To propose a simple and accurate quantitative method based on the linear relationship between magnetic resonance (MR) signal enhancement (ΔSI=SIpostcontrastSIprecontrast) and gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) concentration (C) by using T1-weighted three-dimensional magnetization-prepared rapid acquisition gradient-echo (T1 3D MP-RAGE) sequence for the in vivo measurement of Gd-DTPA concentration in real-time neuroimaging at 3.0 T.

Methods

Phantom experiment was carried out to study the linear fitting of signal intensity change vs. Gd-DTPA concentration (ΔSI-C) curve. A goodness-of-fit test was performed to compare the accuracy between the proposed method and the conventional method based on longitudinal relaxation rate (R1=1/T1) measurement. The influences on the goodness of fit (R2) and the signal-to-noise ratio (SNR) by sequence parameters were explored. Six human subjects with different brain tumors, who underwent a Gd-DTPA-enhanced MRI, were enrolled for in vivo application of the novel method.

Results

A good linear relationship between ΔSI and Gd-DTPA concentration existed over the concentration range of 0-1 mM (R2=0.985). The linearity of the ΔSI-C curve was as good as that of the 1/T1-C curve (R2=0.988). Concentrations calculated by both methods had a strong correlation (R2=0.920). An improved linearity of the ΔSI-C curve and an increased SNR can be achieved using sequences with a shorter inversion time (TI) and a higher flip angle. The concentration range of Gd-DTPA in human brain tumors was within the quantitative scope of 0-1 mM.

Conclusions

The proposed quantitative method based on ΔSI measurement is accurate and applicable for real-time neuroimaging at 3.0 T.  相似文献   

3.

Purpose

To describe the paradoxical high signal intensity of hepatocellular carcinoma (HCC) in the hepatobiliary phase on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI).

Materials and Methods

A database search was performed to identify cases of HCC that showed unusual prolonged enhancement in the hepatobiliary phase of Gd-EOB-DTPA MRI. All patients received 3.0-T liver MRI including precontrast T1-weighted images, T2-weighted images and a post Gd-EOB-DTPA-enhanced dynamic study. The signal intensity of HCC was measured at pre-enhanced, arterial, portal, delayed and hepatobiliary phase using regions of interest. Radiologic and pathologic correlation was performed for the paradoxically prolonged enhancing portion of HCC in the hepatobiliary phase.

Results

Four patients (all male, age range 44-70; mean 57.5 years) were included in this study. All patients showed HCC lesions that were low signal intensity (SI) on T1-WI, high SI on T2-WI, enhanced in arterial phase, and washed-out in delayed phase. All cases showed paradoxically high SI in hepatobiliary phase, which was unusual for HCC. Pathologically, they were all diagnosed as well-differentiated HCC with prominent cytoplasm and a bile secreting appearance.

Conclusion

HCC may demonstrate the prolonged high signal intensity at the hepatobiliary phase on Gd-EOB-DTPA enhanced MRI. These HCCs tended to be highly differentiated and to have prominent bile secretion.  相似文献   

4.

Purpose

This study discusses prominent signal intensity of T1/T2 prolongation of subcortical white matter within the anterior temporal region in premature infant brains that radiologists may encounter when interpreting conventional screening MRIs.

Materials and Methods

T1- and T2-weighted images of 69 preterm and term infants with no neurological abnormalities or developmental delays were evaluated retrospectively for areas of prominent signal intensity of T1/T2 prolongation in white matter. We measured signal intensities of anterior temporal white matter, deep temporal white matter, frontopolar white matter and subcortical white matter of the precentral gyrus. We accessed chronological changes in signal intensity in the anterior and deep temporal white matter. We also analyzed variance tests among the signal intensity ratios to the ipsilateral thalamus of white matter areas by gestational age.

Results

There was high frequency of prominent signal intensity of T1/T2 prolongation in the temporal tip, particularly at a gestational age of 36–38 weeks. Signal intensity ratio of the anterior temporal white matter was lower on T1-weighted images and higher on T2-weighted images, and the finding became less prominent with increasing gestational age. The signal intensity ratios of anterior temporal white matter at a gestational age of 36–37 weeks and 38–39 weeks were significantly different from other regions.

Conclusion

Prominent signal intensity of T1/T2 prolongation of subcortical white matter of the anterior temporal region is seen in normal premature infants, especially those at 36–39 gestational weeks. Although it is a prominent finding, radiologists should understand that these findings do not represent a pathological condition.  相似文献   

5.

Purpose

Quantification of cardiac magnetic resonance (CMR) myocardial perfusion remains time consuming since it requires manual interventions to compensate for motion. Thus, the aim of this study was to evaluate a semiautomated registration method.

Materials and Methods

A rigid edge-based registration algorithm was applied on 10 patients who had rest and stress CMR acquisitions on three slice levels (apical, midventricular and basal slices). Registration efficiency was assessed qualitatively by evaluating the quality of k-means maps in terms of symmetry and heart structures identification before and after registration and quantitatively by estimating noise amplitude within the myocardium. Finally, residual registration errors were manually estimated.

Results

Before registration, k-means maps were satisfactory for 15 of 30 slices at rest and for only 5 of 30 slices during stress. After registration, the k-means maps quality was satisfactory for 29 of 30 slices at rest and for 30 of 30 slices during stress. Moreover, registration reduced noise amplitude from 49±26 to 29±11 at rest (P<.01) and from 52±14 to 30±10 during stress (P<.01). The residual horizontal and vertical shifts were 0.06±0.12 and 0.04±0.08 mm at rest and 0.32±0.69 and 0.28±0.53 mm at stress.

Conclusion

The registration was successfully tested on rest and stress CMR perfusion data. It provides a valuable basis for quantitative evaluation of myocardial perfusion.  相似文献   

6.
Shen CC  Shi TY 《Ultrasonics》2011,51(5):554-560

Background

Ultrasound tissue harmonic signal generally provides superior image quality as compared to the linear signal. However, since the generation of the tissue harmonic signal is based on finite amplitude distortion of the propagating waveform, the penetration and the sensitivity in tissue harmonic imaging are markedly limited because of the low signal-to-noise ratio (SNR).

Methods

The method of third harmonic (3f0) transmit phasing can improve the tissue harmonic SNR by transmitting at both the fundamental (2.25 MHz) and the 3f0 (6.75 MHz) frequencies to achieve mutual enhancement between the frequency-sum and the frequency-difference components of the second harmonic signal. To further increase the SNR without excessive transmit pressure, coded excitation can be incorporated in 3f0 transmit phasing to boost the tissue harmonic generation.

Results

Our analyses indicate that the phase-encoded Golay excitation is suitable in 3f0 transmit phasing due to its superior transmit bandwidth efficiency. The resultant frequency-sum and frequency-difference components of tissue harmonic signal can be simultaneously Golay-encoded for SNR improvement. The increase of the main-lobe signal with the Golay excitation in 3f0 transmit phasing are consistent between the tissue harmonic measurements and the simulations. B-mode images of the speckle generating phantom also demonstrate the increases of tissue harmonic SNR for about 11 dB without noticeable compression artifacts.

Conclusion

For tissue harmonic imaging in combination with the 3f0 transmit phasing method, the Golay excitation can provide further SNR improvement. Meanwhile, the axial resolution can be effectively restored by pulse compression while the lateral resolution remains unchanged.  相似文献   

7.

Objective

To evaluate the image findings of focal fat deposition (FFD) in the liver on gadobenate dimeglumine (Gd-BOPTA)- and gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI, particularly during the hepatobiliary phase (HBP), and the relationship between relative enhancement (RE) and fat signal fraction (FSF) of FFD.

Subjects and Methods

Twenty-one patients with 27 FFDs (mean diameter, 21.9 mm), which showed low signal intensity on opposed-phase compared with in-phase MRI, were retrospectively evaluated. RE of the liver (REliver) and FFD (REFFD) and liver-to-lesion contrast-to-noise ratio (CNR) of FFD were measured on dynamic phases and HBP images with fat-saturated in-phase gradient-echo sequence. The FSF of each FFD was measured on in- and opposed-phase dual gradient-echo images. We qualitatively analyzed imaging findings of FFDs, including signal intensity, shape, margin, and homogeneity on HBP images, and enhancement pattern during dynamic phases. The correlations between REFFD and FSF and between CNR and FSF on HBP images were evaluated using Pearson’s correlation tests and a simple linear regression model.

Results

There were no significant differences between REFFD and REliver in dynamic phases and HBP, regardless of contrast agents (p ≥ 0.075). On HBP images, CNR (p = 0.008) but not REFFD (p = 0.122) was significantly correlated with FSF of FFDs (mean FSF, 19%). On HBP images, 21 of the 27 (77.8%) FFDs were hypointense, and 17 (63%) were homogeneous. Of the 21 hypointense FFDs, 12 (57.1%) had an ovoid shape and 11 (52.4%) were well margined. Although the 27 FFDs showed various enhancement patterns, 17 (63%) showed no enhancement.

Conclusion

Most FFDs appeared as hypointense lesions on Gd-BOPTA- and Gd-EOB-DTPA-enhanced MRI during HBP, with various enhancement patterns during dynamic contrast-enhanced phases. REFFD on HBP images was not significantly correlated with FSF of low grade FFDs.  相似文献   

8.

Purpose

To establish the feasibility of chemical exchange saturation transfer (proteinCEST) MRI in the differentiation of osteoarthritis (OA) knee joints from non-OA joints by detecting mobile protein and peptide levels in synovial fluid by determining their relative distribution.

Materials and Methods

A total of 25 knees in 11 men and 12 women with knee injuries were imaged using whole knee joint proteinCEST MRI sequence at 3 T. The joint synovial fluid was segmented and the asymmetric magnetization transfer ratio at 3.5 ppm MTRasym (3.5 ppm) was calculated to assess protein content in the synovial fluid. The 85th percentile of synovial fluid MTRasym (3.5 ppm) distribution profile was compared using the independent Student's t test. The diagnostic performance of the 85th percentile of synovial fluid MTRasym (3.5 ppm) in differentiating OA and non-OA knee joints was evaluated.

Results

The 85th percentile of synovial fluid MTRasym (3.5 ppm) in knee joints with OA was 8.6%±3.4% and significantly higher than that in the knee joints without OA (6.3%±1.4%, P<.05). A knee joint with an 85th percentile of synovial fluid MTRasym (3.5 ppm) greater than 7.7% was considered to be an OA knee joint. With the threshold, the sensitivity, specificity and overall accuracy for differentiating knee joints with OA from the joints without OA were 54% (7/13), 92% (11/12) and 72% (18/25), respectively.

Conclusion

proteinCEST MRI appears feasible as a quantitative methodology to determine mobile protein levels in synovial fluid and identify patterns characteristic for OA disease.  相似文献   

9.

Purpose

The purpose of the study was to investigate the relationship between gas challenge-blood oxygen level-dependent (GC-BOLD) response angiogenesis and tumor size in rat Novikoff hepatoma model.

Materials and Methods

Twenty adult male Sprague-Dawley rats (weighting 301-325 g) were used for our Animal Care and Use Committee-approved experiments. N1-S1 Novikoff hepatomas were grown in 14 rats with sizes ranging from 0.42 to 2.81 cm. All experiments were performed at 3.0 T using a custom-built rodent receiver coil. A multiple gradient-echo sequence was used for R2? measurements, first during room air (78% N2/20% O2) breathing and then after 10 min of carbogen (95% O2/5% CO2) breathing. After image acquisition, rats were euthanized, and the tumors were harvested for histological evaluation.

Results

The R2? change between air and carbogen breathing for small hepatomas was positive; R2? changes changed to negative values for larger hepatomas. We found a significant positive correlation between tumor R2? change and tumor microvessel density (MVD) (r=0.798, P=.001) and a significant inverse correlation between tumor R2? change and tumor size (r=−0.840, P<.0001).

Conclusions

GC-BOLD magnetic resonance imaging measurements are well correlated to MVD levels and tumor size in the N1-S1 Novikoff hepatoma model; GC-BOLD measurements may serve as noninvasive biomarkers for evaluating angiogenesis and disease progression and/or therapy response.  相似文献   

10.

Purpose

The aim of this study was to develop a targeted volumetric radiofrequency field (B1+) mapping technique to provide region-of-interest B1+ information.

Materials and Methods

Targeted B1+ maps were acquired using three-dimensional (3D) reduced field-of-view (FOV) inner-volume turbo spin echo-catalyzed double-angle method (DAM). Targeted B1+ maps were compared with full-FOV B1+ maps acquired using 3D catalyzed DAM in a phantom and in the brain of a healthy volunteer. In addition, targeted volumetric abdomeninal B1+ mapping was demonstrated in the abdomen of another healthy volunteer.

Results

The targeted reduced-FOV images demonstrated no aliasing artifacts in all experiments. Close match between targeted B1+ map and reference full-FOV B1+ map in the same region was observed, with percentage root-mean-squared error <0.4% in the phantom and <0.8% in the healthy volunteer brain. The abdominal B1+ maps showed small B1+ variation in the kidneys and liver from the healthy volunteer.

Conclusion

The proposed 3D reduced-FOV catalyzed DAM provides a rapid, simple and accurate method for targeted volumetric B1+ mapping and can be easily implemented for applications related to radiofrequency field mapping in small targeted regions.  相似文献   

11.
Shen CC  Wu HH 《Ultrasonics》2012,52(2):238-243

Background

High-frequency Doppler imaging is highly potential for detection of blood flow in microcirculation. In a swept-scan system, however, the spectral broadening of tissue clutter limits the detectability of low-velocity flow signal. Conventionally, the scanning speed of transducer has to be reduced to alleviate the clutter interference but at the cost of imaging frame rate. For example, the blood velocity of 0.5 mm/s becomes detectable only with a scanning speed lower than 1 mm/s. In this study, an alternative method is examined by suppressing the clutter magnitude to reduce the interference to flow signal without sacrificing scanning speed.

Methods

The method of third harmonic (3f0) transmit phasing can suppress the tissue harmonic clutter by transmitting at the fundamental and the additional 3f0 frequencies to achieve mutual cancellation between the frequency-sum and the frequency-difference components of the second harmonic signal. With 3f0 transmit phasing, the cut-off frequency of wall filtering can be reduced to preserve low-velocity flow without compromising the frame rate.

Results

Our results indicate that the 3f0 transmit phasing effectively reduces the harmonic clutter magnitude and thus improves the flow signal-to-clutter ratio. Compared to the conventional counterpart, the clutter-suppressed color flow and power Doppler images show fewer clutter artifacts and is capable of detecting more low-velocity flow of microbubbles. The resultant color-pixel-density also improves with clutter suppression.

Conclusion

For the swept-scan high-frequency (>20 MHz) system, 3f0 transmit phasing is capable of providing effective clutter suppression. With the same achievable scanning speed, the resultant Doppler image has higher sensitivity for low-velocity flow and is less susceptible to clutter artifacts.  相似文献   

12.

Purpose

The aim of this study was to retrospectively evaluate the ability of dynamic, contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate between ductal carcinoma in situ (DCIS) and mastopathy by analyzing their signal intensities (SIs).

Methods

After the pre-contrast MRI was performed using a 1.5-T MRI system, DCE-MRI was performed four times following intravenous administration of contrast medium. We set the volumes of interest (VOIs) on the tumor and normal mammary gland and obtained the SIs in these VOIs. We calculated the entropy (EPY) in the pre-contrast (EPY0) and four post-contrast scans (EPY1, EPY2, EPY3, and EPY4 for the first, second, third and fourth scans, respectively) using the volume histogram method, and the wash-in (WRin) and washout rates (WRout) according to the Breast-Imaging Reporting and Data System developed by the American College of Radiology. We also calculated the early slope (Slopeearly) from the pre- and post-contrast SIs in the tumor and normal gland. We evaluated the usefulness of the above parameters for differentiating between DCIS and mastopathy using the area under the receiver operating characteristic curve (Az).

Results

There were significant differences in EPY2 (P=.009), EPY3 (P=.017), EPY4 (P=.034), WRin (P=.036), WRout (P=.019), and Slopeearly (P=.002) between DCIS and mastopathy. The average Az values were 0.67, 0.52, 0.64, 0.63, 0.67 and 0.70 for EPY2, EPY3, EPY4, WRin, WRout and Slopeearly, respectively.

Conclusion

We evaluated the usefulness of various parameters calculated from SIs obtained by DCE-MRI for differentiating between DCIS and mastopathy. Our results suggested that Slopeearly is more useful than EPYs, WRin and WRout.  相似文献   

13.
The effect of superparamagnetic iron oxide particles on magnetic resonance myocardial signal intensity was examined in order to define the ability of this agent to identify normal, ischemic, and reperfused myocardium. Data were obtained from 6 normal rats (group 1) and from 6 heterotopic isogenic rat heart transplants (group 2) at 4.7 T with a multislice spin-echo sequence. Images were acquired in (a) normal rats before and after the infusion of 36 μmol Fe/kg of AMI-25 (group 1) and (b) rat heart transplants during control, global myocardial ischemia (before and after the injection of 72 μmol Fe/kg of AMI-25), and following reperfusion (group 2). Myocardial signal intensity decreased by 36 ± 4%, p < 0.001, following contrast infusion in normal hearts (group 1). The intensity remained constant in the rat heart transplants (group 2) during coronary occlusion, both before and after the infusion of AMI-25 and decreased by 61 ± 7%, p < 0.001, upon reperfusion. The larger effect of AMI-25 in reperfused as compared to normal myocardium suggests the presence of ischemia-induced hyperemia. There was no significant difference (analysis of variance) among intensities from different myocardial regions in either group at any stage of the experiment. We conclude that the use of AMI-25 permits identification of normal, ischemic, and reperfused myocardium and may therefore be helpful for the early detection of reperfusion following thrombolytic therapy for acute myocardial infarction.  相似文献   

14.
Wang X  Leung AW  Jiang Y  Yu H  Li X  Xu C 《Ultrasonics》2012,52(4):543-546

Objective

The present study aims to investigate apoptosis of hepatocellular carcinoma cells induced by hypocrellin B-mediated sonodynamic action.

Methods

The hypocrellin B concentration was kept constant at 2.5 μM and cells from the hepatocellular carcinoma HepG2 cell line were exposed to ultrasound with an intensity of 0.46 W/cm2 for 8 s. Cell cytotoxicity was quantified using an MTT assay 24 h after sonodynamic therapy (SDT) of hypocrellin B. Apoptosis was investigated using a flow cytometry with Annexin V-FITC and propidium iodine staining. Intracellular reactive oxygen species (ROS) levels were detected using a flow cytometry with 2,7-dichlorodihydrofluorecein diacetate (DCFH-DA) staining.

Results

The cytotoxicity of hypocrellin B-mediated sonodynamic action on HepG2 cells was significantly higher than those of other treatments including ultrasound alone, hypocrellin B alone and sham treatment. Flow cytometry showed that hypocrellin B-induced sonodynamic action markedly enhanced the apoptotic rate of HepG2 cells. Increased ROS was observed in HepG2 cells after being treated with hypocrellin B-mediated sonodynamic action.

Conclusions

Our data demonstrated that hypocrellin B-mediated sonodynamic action remarkably induced apoptosis of HepG2 cells, suggesting that apoptosis is an important mechanism of cell death induced by hypocrellin B-mediated SDT.  相似文献   

15.

Purpose

To evaluate whether a non-linear blood ΔR2*-versus-concentration relationship improves quantitative cerebral blood flow (CBF) estimates obtained by dynamic susceptibility contrast (DSC) MRI in a comparison with Xe-133 SPECT CBF in healthy volunteers.

Material and Methods

Linear as well as non-linear relationships between ΔR2* and contrast agent concentration in blood were applied to the arterial input function (AIF) and the venous output function (VOF) from DSC-MRI. To reduce partial volume effects in the AIF, the arterial time integral was rescaled using a corrected VOF scheme.

Results

Under the assumption of proportionality between the two modalities, the relationship CBF(MRI) = 0.58CBF(SPECT) (r = 0.64) was observed using the linear relationship and CBF(MRI) = 0.51CBF(SPECT) (r = 0.71) using the non-linear relationship.

Discussion

A smaller ratio of the VOF time integral to the AIF time integral and a somewhat better correlation between global DSC-MRI and Xe-133 SPECT CBF estimates were observed using the non-linear relationship. The results did not, however, confirm the superiority of one model over the other, potentially because realistic AIF signal data may well originate from a combination of blood and surrounding tissue.  相似文献   

16.

Objective:

The objective in this work is to investigate the feasibility of using a new imaging tool called vibro-acoustography (VA) as a means of permanent prostate brachytherapy (PPB) seed localization to facilitate post-implant dosimetry (PID).

Methods and materials:

Twelve OncoSeed (standard) and eleven EchoSeed (echogenic) dummy seeds were implanted in a human cadaver prostate. Seventeen seeds remained after radical retropubic prostatectomy. VA imaging was conducted on the prostate that was cast in a gel phantom and placed in a tank of degassed water. 2-D magnitude and phase VA image slices were obtained at different depths within the prostate showing location and orientation of the seeds.

Results:

VA demonstrates that twelve of seventeen (71%) seeds implanted were visible in the VA image, and the remainder were obscured by intra-prostatic calcifications. Moreover, it is shown here that VA is capable of imaging and locating PPB seeds within the prostate independent of seed orientation, and the resulting images are speckle free.

Conclusion:

The results presented in this research show that VA allows seed detection within a human prostate regardless of their orientation, as well as imaging intra-prostatic calcifications.  相似文献   

17.

Purpose

To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration.

Methods

Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined.

Results

MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation.

Conclusion

This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies.  相似文献   

18.

Purpose

Left ventricular (LV) remodeling is usually assessed using global changes in LV volume. We hypothesized that three-dimensional analysis of regional endocardial curvature from magnetic resonance images could provide clinically useful information on localized LV remodeling. We tested this approach by investigating regional differences in endocardial curvature in normal and hypokinetic ventricles.

Materials and Methods

Images were obtained in 44 patients with normal LV function (NL, N=14), dilated cardiomyopathy (DCM, N=15) or ischemic heart disease (IHD, N=15). Local surface curvedness, normalized to take into account instantaneous LV size (Cn), was calculated throughout the cardiac cycle and compared between segment groups: NL (N=401), IHD (N=92) and DCM (N=255).

Results

In all normal segments, Cn gradually increased during systole and then decreased during diastole. While both maximum and minimum values of Cn were comparable in the basal and midventricular segments, they were significantly higher in the four apical segments and highest in the apical cap. In addition, percent change in Cn was higher in mid and apical compared to basal segments (P<.05). At all LV levels, Cn values in DCM segments were lower (P<.05) than in NL and IHD segments, which were similar. In contrast, percent change in Cn was significantly lower in both IHD and DCM segments compared to NL.

Conclusion

Three-dimensional analysis of LV endocardial curvature yielded quantitative information on regional ventricular shape consistent with the known pathophysiology, supporting its potential clinical usefulness in the evaluation of LV remodeling.  相似文献   

19.
Shen CC  Su SY  Cheng CH  Yeh CK 《Ultrasonics》2012,52(1):25-32

Objective

The goal of this work is to examine the effects of pulse-inversion (PI) technique in combination with dual-frequency (DF) excitation method to separate the high-order nonlinear responses from microbubble contrast agents for improvement of image contrast. DF excitation method has been previously developed to induce the low-frequency ultrasound nonlinear responses from bubbles by using the composition of two high-frequency sinusoids (f1 and f2).

Motivation

Although the simple filtering was conventionally utilized to provide signal separation, the PI approach is better in the sense that it minimizes the mutual interferences among these high-order nonlinear responses in the presence of spectral overlap. The novelty of the work is that, in addition to the common PI summation, the PI subtraction was also applied in DF excitation method.

Methods

DF excitation pulses having an envelope frequency of 3 MHz (i.e., f1 = 8.5 MHz and f2 = 11.5 MHz) with pulse lengths of 3-10 μs and the pressure amplitudes from 0.5 to 1.5 MPa were used to interrogate the nonlinear responses of SonoVue™ microbubbles in the phantom experiments. The high-order nonlinear responses in the DF excitation were extracted for contrast imaging using PI summation for even-order nonlinear components or PI subtraction for odd-order nonlinear ones.

Results

Our results indicated that, as compared to the conventional filtering technique, the PI processing effectively increases the contrast-to-tissue ratio (CTR) of the third-order nonlinear response at 5.5 MHz and the fourth-order nonlinear response at 6 MHz by 2-5 dB. For these high-order nonlinear components, the CTR increase varies with the transmission pressures from 0.5 to 1.5 MPa due to the microbubbles’ displacement induced by the radiation force of DF excitation.

Conclusions

For DF excitation technique, the PI processing can help to extract either the odd-order or the even-order nonlinear components for higher CTR estimates.  相似文献   

20.

Aim

The purpose of this study was to evaluate the intra- and interexaminer resegmentation precision of patellar cartilage T2 mapping measurements in healthy subjects.

Materials and Methods

T2-weighted images of patellar cartilage for 10 subjects were acquired. Two individuals manually segmented patellar cartilage at each slice location twice, once on each of two separate days. Bulk average and zonal T2 values for the superficial, middle, and deep layers of cartilage were calculated. The root mean square (RMS) and coefficient of variation (COV) were calculated using the repeated measurements of each slice of each subject by each examiner.

Results

The intraexaminer bulk T2 differences were 0.2±1.0 ms, with an RMS error of 0.7 ms and a COV of 1.9%. The differences of interexaminer bulk T2 values was 1.0±1.4 ms, with an RMS error of 1.2 ms and a COV of 3.3%. The superficial zone of cartilage had the highest zonal variability of T2 values. The average interexaminer T2 values for the superficial, middle and deep zones were 42.2±5.6, 38.1±5.3 and 31.9±4.6 ms, respectively.

Conclusion

The interexaminer variability of calculated T2 values highlights the difficulty of interpreting significant differences of T2 values which are similar in magnitude. The repeatability measurements of patellar cartilage T2 values were less than reported intersession T2 repeatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号