首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three protonated forms of 7-methylguanine (7-MeGH, 1) with different counter ions, [7-MeGH(2)]X (X = NO(3), 1a; ClO(4), 1b; BF(4), 1c) and two Pt(II) complexes, trans-[Pt(NH(3))(2)(7-MeGH-N9)(2)](ClO(4))(2) (4) and trans-[Pt(NH(3))(2)(7-MeGH-N9)(7-MeGH-N3)](ClO(4))(2)·3H(2)O (5) are described and their X-ray crystal structures are reported. 1a-1c form infinite ribbons via pairs of intermolecular hydrogen bonds between N1H···O6 and N3···N2H(2) sites, with anions connecting individual ribbons, thereby generating extended sheets. 4 and 5 do not display unusual features, except that 5 represents a rare case of a bis(nucleobase) complex of Pt(II) in which linkage isomers occur. Unlike in a previously reported compound, [Pt(dien)(7-MeGH-N9)](NO(3))(ClO(4)), the Pt coordination planes and the 7-MeGH planes are not coplanar in 4 and 5. The hydrogen bonding behaviour of 7-MeGH, free and when platinated at N9 (complex 4), was studied in Me(2)SO-d(6). It revealed the following: (i) there is no detectable self-association of 1 in Me(2)SO solution. (ii) 1 and 1-methylcytosine (1-MeC) form Watson-Crick pairs. (iii) 4 does not self-associate. (iv) 4 associates with 1-MeC in the Watson-Crick fashion. (v) 4 and 1 interact in solution, but no model can be proposed at present. (vi) Remarkable interaction shifts between 4 and 1 occur when NH(3) is liberated from trans-(NH(3))(2)Pt(II) to give NH(4)(+) in Me(2)SO-d(6). Feasible models, which imply the presence of deprotonated 7-MeG(-) species are proposed. Finally, DFT calculations were carried out to qualitatively estimate the effect of 7-MeGH acidity in [Pt(dien)(7-MeGH-N9)](2+) in dependence of the dihedral angle between the Pt coordination plane and the nucleobase.  相似文献   

2.
[Pt(2,2'-bpy)(1-MeC-N3)(2)](NO(3))(2) (1) (2,2'-bpy = 2,2'-bipyridine; 1-MeC = 1-methylcytosine) exists in water in an equilibrium of head-tail and head-head rotamers, with the former exceeding the latter by a factor of ca. 20 at room temperature. Nevertheless, 1 reacts with (en)Pd(II) (en = ethylenediamine) to give preferentially the dinuclear complex [Pt(2,2'-bpy)(1-MeC(-)-N3,N4)(2)Pd(en)](NO(3))(2)·5H(2)O (2) with head-head arranged 1-methylctosinato (1-MeC(-)) ligands and Pd being coordinated to two exocyclic N4H(-) positions. Addition of AgNO(3) to a solution of 2 leads to formation of a pentanuclear chain compound [{Pt(2,2'-bpy)(1-MeC(-))(2)Pd(en)}(2)Ag](NO(3))(5)·14H(2)O (5) in which Ag(+) cross-links two cations of 2 via the four available O2 sites of the 1-MeC(-) ligands. 2 and 5 appear to be the first X-ray structurally characterized examples of di- and multinuclear complexes derived from a Pt(II) species with two cis-positioned cytosinato ligands adopting a head-head arrangement. (tmeda)Pd(II) (tmeda = N,N,N',N'-tetramethylethylenediamine) and (2,2'-bpy)Pd(II) behave differently toward 1 in that in their derivatives the head-tail orientation of the 1-MeC(-) nucleobases is retained. In [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(2,2'-bpy)}(2)](NO(3))(4)·10H(2)O (4), both (2,2'-bpy)Pd(II) entities are pairwise bonded to N4H(-) and O2 sites of the two 1-MeC(-) rings, whereas in [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(tmeda)}(2)(NO(3))](NO(3))(3)·5H(2)O (3) only one of the two (tmeda)Pd(II) units is chelated to N4H(-) and O2. The second (tmeda)Pd(II) is monofunctionally attached to a single N4H(-) site. On the basis of these established binding patterns, ways to the formation of mixed Pt/Pd complexes and possible intermediates are proposed. The methylene protons of the en ligand in 2 are special in that they display two multiplets separated by 0.64 ppm in the (1)H NMR spectrum.  相似文献   

3.
A model compound of the second most abundant DNA adduct of the antitumor agent cisplatin has been synthesized and structurally and spectroscopically characterized and its conformational behavior examined: cis-[(NH(3))(2)Pt(9-MeA-N7)(9-EtGH-N7)](NO(3))(2).2H(2)O (9-MeA = 9-methyladenine; 9-EtGH = 9-ethylguanine) crystallizes in the monoclinic system, space group P2(1)/n (No. 14) with a = 7.931(2), b = 11.035(3), c = 26.757(6) ?, beta = 94.94(2) degrees, and Z = 4. The two purine bases adopt a head-to-head orientation, with NH(2) of 9-MeA and CO of 9-EtGH being at the same side of the Pt coordination plane. A theoretical conformational analysis of the complex cis-[(NH(3))(2)Pt(Ade)(Gua)](2+) (Ade = adenine; Gua = guanine) based on molecular mechanics calculations of the nonbonded energy has revealed four minimum-energy zones similar to those derived previously for cis-[(NH(3))(2)Pt(Gua)(2)](2+) (Kozelka; et al. Eur. J. Biochem. 1992, 205, 895). This conformational analysis has allowed, together with the calculation of chemical shifts due to ring effects, the attribution of the two conformers observed for cis-[(NH(3))(2)Pt{d(ApG)}](+) by Dijt et al. (Eur. J. Biochem. 1989, 179, 344) to the two head-to-head conformational zones. The orientation of the two nucleobases in the crystal structure of cis-[(NH(3))(2)Pt(9-MeA)(9-EtGH)](2+) corresponds, according to our analysis, roughly to that preferentially assumed by the minor rotamer of cis-[(NH(3))(2)Pt{d(ApG)}](+).  相似文献   

4.
The novel dinuclear Pt(II) complexes [{trans-Pt(NH(3))(2)Cl}(2)(μ-pyrazine)](ClO(4))(2) (Pt1), [{trans-Pt(NH(3))(2)Cl}(2)(μ-4,4'-bipyridyl)](ClO(4))(2)·DMF (Pt2), and [{trans-Pt(NH(3))(2)Cl}(2)(μ-1,2-bis(4-pyridyl)ethane)](ClO(4))(2) (Pt3), were synthesized. Acid-base titrations, and temperature and concentration dependent kinetic measurements of the reactions with biologically relevant ligands such as thiourea (Tu), glutathione (GSH) and guanosine-5'-monophosphate (5'-GMP) were studied at pH 2.5 and 7.2. The reactions were followed under pseudo-first-order conditions by stopped-flow and UV-vis spectrophotometry. (1)H NMR spectroscopy was used to follow the substitution of chloride in the complex [{trans-Pt(NH(3))(2)Cl}(2)(μ-4,4'-bipyridyl)](ClO(4))(2)·DMF by guanosine-5'-monophosphate (5'-GMP) under second-order conditions. The results indicate that the bridging ligand has an influence on the reactivity of the complexes towards nucleophiles. The order of reactivity of the investigated complexes is Pt1 > Pt2 > Pt3.  相似文献   

5.
The reaction of a potential mono(nucleobase) model adduct of cisplatin, cis-[Pt(NH(3))(2)(1-MeC-N3)(H(2)O)](2+) (6; 1-MeC: 1-methylcytosine), with the electrophile [Pd(en)(H(2)O)(2)](2+) (en: ethylenediamine) at pH approximately 6 yields a kinetic product X which is likely to be a dinuclear Pt,Pd complex containing 1-MeC(-)-N3,N4 and OH bridges, namely cis-[Pt(NH(3))(2)(1-MeC(-)-N3,N4)(OH)Pd(en)](2+). Upon addition of excess Ag(+) ions, conversion takes place to form a thermodynamic product, which, according to (1)H NMR spectroscopy and X-ray crystallography, is dominated by a mu-NH(2) bridge between the Pt(II) and Pd(II) centers. X-ray crystallography reveals that the compound crystallizes out of solution as a dodecanuclear complex containing four Pt(II), four Pd(II), and four Ag(+) entities: [{Pt(2)(1-MeC(-)-N3,N4)(2)(NH(3))(2)(NH(2))(2)(OH)Pd(2)(en)(2)Ag}(2){Ag(H(2)O)}(2)](NO(3))(10) 6 H(2)O (10) is composed of a roughly planar array of the 12 metal ions, in which the metal ions are interconnected by mu-NH(2) groups (between Pt and Pd centers), mu-OH groups (between pairs of Pt atoms), and metal-metal donor bonds (Pt-->Ag, Pd-->Ag). The four 1-methylcytosinato ligands, which are stacked pairwise, as well as the four NH(3) ligands and parts of the en rings, are approximately perpendicular to the metal plane. Two of the four Ag ions (Ag2, Ag2') of 10 are labile in solution and show the expected behavior of Ag(+) ions in water, that is, they are readily precipitated as AgCl by Cl(-) ions. The resulting pentanuclear complex [Pt(2)Pd(2)Ag(1-MeC(-))(2)(NH(2))(2)(OH)(NH(3))(2)(en)(2)](NO(3))(4)7 H(2)O (11) largely maintains the structural features of one half of 10. The other two Ag(+) ions (Ag1, Ag1') of 10 are remarkably unreactive toward excess NaCl. In fact, the pentanuclear complex [Pt(2)Pd(2)AgCl(1-MeC(-))(2)(NH(2))(2)(OH)(NH(3))(2)(en)(2)](NO(3))(3)4.5 H(2)O (12), obtained from 10 with excess NaCl, displays a Cl(-) anion bound to the Ag center (2.459(3) A) and is thus a rare case of a crystallized "AgCl molecule".  相似文献   

6.
Blocking of Watson-Crick or Hoogsteen edges in purine nucleobases by a metal entity precludes involvement of these sites in interbase hydrogen bonding, thereby leaving the respective other edge or the sugar edge as potential H bonding sites. In mixed guanine, adenine complexes of trans-a2PtII (a = NH3 or CH3NH2) of composition trans-[(NH3)2Pt(9-EtA-N1)(9-MeGH-N7)](NO3)2 (1a), trans-[(NH3)2Pt(9-EtA-N1)(9-MeGH-N7)](ClO4)2 (1b), and trans,trans-[(CH3NH2)2(9-MeGH-N7)Pt(N1-9-MeA-N7)Pt(9-MeGH-N7)(CH3NH2)2](ClO4)4*2H2O (2) (with 9-EtA = 9-ethyladenine, 9-MeA= 9-methyladenine, 9-MeGH = 9-methylguanine), this aspect is studied. Thus, in 1b pairing of two adenine ligands via Hoogsteen edges and in 2 pairing of two guanine bases via sugar edges is realized. These situations are compared with those found in a series of related complexes.  相似文献   

7.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   

8.
Adenine acidification as a consequence of simultaneous PtII binding to N1 and N7 facilitates deprotonation of the exocyclic N(6)H2 group and permits PtII migration from N1 to N6 under mild conditions. Starting from the trinuclear complex cis-[(NH3)2Pt(N1-9-MeA-N7)2{Pt(NH3)3)}2]6+ (3), stepwise migration of cis-(NH3)2PtII takes place in the alkaline aqueous solution to give initially cis-[(NH3)2Pt(N1-9-MeA-N7)(N6-9-MeA--N7){Pt(NH3)3}2]5+ (4) and eventually cis-[(NH3)2Pt(N6-9-MeA--N7)2{Pt(NH3)3}2]4+ (5) (with 9-MeA = neutral 9-methyladenine, 9-MeA- = 9-methyl-adenine monoanion, deprotonated at N6). The migration process has been studied by 1H NMR spectroscopy, and relevant acid-base equilibria have been determined. 5 has been crystallized as its nitrate salt and has been characterized by X-ray crystallography. The precursor of 3, [(NH3)3Pt (9-MeA-N7)]Cl2.2H2O (2) has likewise been studied by X-ray analysis.  相似文献   

9.
The formation of a cocrystallized coordination compound, [Pd(3)(D-pen)(3)](2)·[M(en)(3)](ClO(4))(3) (D-H(2)pen = D-penicillamine; M = Co(III) or Rh(III)), from [Pd(3)(D-pen)(3)] and [M(en)(3)](ClO(4))(3) is reported. In this compound, only the Δ-configurational [M(en)(3)](3+) cations were incorporated when its racemic (Δ/Λ) isomer was employed. Besides this enantioselective incorporation of complex cations, this compound was found to show the selective incorporation of ClO(4)(-) as the anion species.  相似文献   

10.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

11.

The formation and X-ray crystal structure of a molecular rectangle of 14.25(2) Å ‐ 10.36(2) Å, comprised of two neutral 9-methyladenine (9-MeA) and two anionic 9-methylhypoxanthinate (9-MeHx) model nucleobases as well as two trans -(NH 3 ) 2 Pt II and two Ag + entities, and further cross-linked intermolecularly by Ag + ions, is described: trans -[{(NH 3 ) 2 Pt(9-MeA)(9-MeHx)Ag(NO 3 ) (H 2 O)} 2 Ag](NO 3 ) 3 6H 2 O ( 4 ). The water molecules are located between adjacent purine quartets and adopt a cyclic water hexamer structure in a chair conformation. In addition, the X-ray crystal structure of the precursor of 4 , trans -[(NH 3 ) 2 Pt(9-MeA)(9-MeHxH)](NO 3 ) 2 H 2 O ( 2 ), is reported. 4 is discussed in terms of its relationship to proposals in the literature concerning possible structures of metalated forms of purine quartets.  相似文献   

12.
A heteronuclear complex of composition trans-[(NH(3))(2)Pt(N4-1-MeC(-)-N3)(2)Cu(H(2)O)(2)](ClO(4))(2) (1a), with 1-MeC(-) = 1-methylcytosinate, has been prepared and characterized by X-ray crystallography. 1a (Cu,Pt) is a linkage isomer of a previously described compound with the two metals inverted (Pt,Cu). The intermetallic distances are significantly different in the two types of compounds, 2.6109(9) A in 1a, yet 2.49-2.56 A in several forms of the linkage isomer. When heated in water in the presence of air, 1a is converted in low yield into diplatinum(III) compounds [(H(3)N)Pt(1-MeC(-)-N3,N4)(4)Pt(NH(3))](2+) (2a) and [(H(2)O)Pt(1-MeC(-)-N3,N4)(4)Pt(NH(3))](2+) (2b), which were crystallized as ClO(4)(-) salts. In a modified procedure a third representative of this group of diplatinum(III) compounds, [(O(2)N)Pt(1-MeC(-)-N3,N4)(4)Pt](+) (2c) was isolated. All three compounds contain the four bridging 1-MeC ligands in a head,tail,head,tail arrangement with Pt-Pt distances (2.4516(7)-2.4976(9) A) that are the shortest ones among diplatinum(III) compounds containing nucleobases.  相似文献   

13.
The reactions of the dinuclear platinum(II) complexes, [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-pz)](NO(3))(2) (1, pz = pyrazolate), [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-1,2,3-ta-N1,N2)](NO(3))(2) (2, 1,2,3-ta = 1,2,3-triazolate), and a newly prepared [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-4-phe-1,2,3-ta-N1,N2)](NO(3))(2) (3, 4-phe-1,2,3-ta = 4-phenyl-1,2,3-triazolate), whose crystal structure was determined, with 9-ethylguanine (9EtG) have been monitored in aqueous solution at 310 K by means of (1)H NMR spectroscopy. The dinuclear platinum(II) complexes 1-3 each react with 9EtG in a bifunctional way to form 1:2 complexes, [[cis-Pt(NH(3))(2)(9EtG-N7)](2)(mu-pz)](3+) (4), [[cis-Pt(NH(3))(2)(9EtG-N7)](2)(mu-1,2,3-ta-N1,N3)](3+) (5), and [[cis-Pt(NH(3))(2)(9EtG-N7)](2)(mu-4-phe-1,2,3-ta-N1,N3)](3+) (6). The reactions of 2 and 3 involve a novel isomerization, in which the Pt atom, initially bound to N2 on the 1,2,3-ta, migrates to N3 after the first substitution by N7 of 9EtG. This isomerization reaction has been unambiguously characterized by 1D and 2D NMR spectroscopy and pH titration. The reactions of 2 and 3 with 9EtG show faster kinetics, and the second-order rate constants (k) for the reactions of 1-3are 1.57 x 10(-4), 2.53 x 10(-4), and 2.56 x 10(-4) M(-1) s(-1), respectively. The pK(a) values at the N1H site of 9EtG were determined for 4-6 from the pH titration curves. Cytotoxicity assays of 1-3 were performed in L1210 murine leukemia cell lines, respectively sensitive and resistant to cisplatin. In the parent cell line, 2 and 3 exhibit higher cytotoxicity compared to cisplatin, especially, 2 is 10 times as active as cisplatin. 1 was found to be less cytotoxic than cisplatin, but still in the active range and more active than cisplatin in a cisplatin-resistant cell line.  相似文献   

14.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

15.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

16.
2,2'-Bipyrazine (2,2'-bpz) reacts with cis-(NH(3))(2)Pt(II) in water to give a variety of products, several of which were isolated and characterized by X-ray analysis: cis-[Pt(NH(3))(2)(2,2'-bpz-N4)(2)](NO(3))(2)·3H(2)O (1), [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(3)]-(PF(6))(5)NO(3)·7H(2)O (2a), [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(3)](BF(4))(2)-(SiF(6))(2)·15H(2)O (2b), and [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(4)]-(SO(4))(4)·22H(2)O (3). In 1, 2b, and 3 the 2,2'-bpz ligands adopt approximately C(2h) symmetries, hence the two pyrazine halves are in trans orientation, whereas in 2a all three 2,2'-bpz bridges are approximately C(2v) symmetric, with the pyrazine halves cis to each other. The topologies of the two triangular complexes 2a and 2b are consequently distinctly different, but nevertheless both cations act as hosts for anions. In 2a a PF(6)(-) and a NO(3)(-) anion are associated simultaneously with the +6 cation, whereas in 2b it is a BF(4)(-) anion and a water molecule, which are trapped in its cavity. There is no anion inclusion in case of the metallasquare 3. In principle, 3 can exist in a large number of stereoisomers, depending on the rotational states of the bridging 2,2'-bpz ligands. Isolation of a single rotamer form of 3 with C(2h) symmetric 2,2'-bpz ligands and an overall meso form is proposed to be a consequence of a highly efficient self-assembly process that starts from the precursor 1 and reaction with two cis-(NH(3))(2)Pt(II) units. This process leads to the isolated rotamer of 3 regardless of whether two cations 1 in head-head form react with two cis-(NH(3))(2)Pt(II), or whether the Δ enantiomer of the chiral head-tail form of 1 combines with its Λ enantiomer through two cis-(NH(3))(2)Pt(II) entities.  相似文献   

17.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

18.
The previously synthesised Schiff-base ligands 2-(2-Ph(2)PC(6)H(4)N[double bond, length as m-dash]CH)-R'-C(6)H(3)OH (R'= 3-OCH(3), HL(1); 5-OCH(3), HL(2); 5-Br, HL(3); 5-Cl, HL(4)) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino)aniline with the appropriate substituted salicylaldehyde. HL(1-4) react directly with M(II)Cl(2)(M = Pd, Pt) or Pt(II)I(2)(cod) affording neutral square-planar complexes of general formula [M(II)Cl(eta(3)-L(1-4))](M = Pd, Pt, 1-8) and [Pt(II)I(eta(3)-L(1-4))](M = Pd, Pt, 9-12). Reaction of complexes 1-4 with the triarylphosphines PR(3)(R = Ph, p-tolyl) gave the novel ionic complexes [Pd(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(13-20). Substituted platinum complexes of the type [Pt(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(R = P(CH(2)CH(2)CN)(3)21-24) and [Pt(II)(P(p-tolyl)(3))(eta(3)-L(3,4))]ClO(4)( 25 and 26 ) were synthesised from the appropriate [Pt(II)Cl(eta(3)-L(1-4))] complex (5-8) and PR(3). The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O,N,P donor set together with one further atom which is trans to the central nitrogen atom.  相似文献   

19.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

20.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号