首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modelled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying Tsai-Hill's yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying Tresca's yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: (1) fiber yield, followed by matrix yielding; (2) complete matrix yield, followed by fiber yielding; and (3) partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.  相似文献   

2.
Two principal squeeze flow modes are investigated for yield stress and Newtonian materials squeezed by a constant force, F, between plates of equal or unequal diameters. In mode A, the material fills the space between the plates and is extruded at their periphery as their separation decreases. Experiments are described to measure the contribution to F from the extrudate. In mode B, all the material remains in contact with the planes of the plates as their separation decreases; there is no extrudate. The results of mode B experiments agree closely with the predictions of theory and give rheological parameters in fair agreement with those measured by the rotational vane method. The material properties and extrusion behaviour which complicate mode A experiments are discussed.  相似文献   

3.
建立了二维弹塑性非稳态循环纯滚动接触有限元模型.材料本构采用一种较好的循环塑性模型,并通过材料用户子程序在通用有限元软件ABAQUS中自定义该本构模型.通过在弹塑性无限半空间表面上重复移动随时间按简谐规律变化的赫兹法向载荷来模拟非稳态循环纯滚动接触过程.通过数值模拟,得到接触表面附近的残余累积变形、应变和残余应力.不同的最大赫兹接触压力对残余应力和残余应变影响较大.在简谐变化的法向接触载荷作用下接触表面的变形呈波浪形,随着滚动次数的增加,该波状表面沿载荷移动相反方向逐渐移动,但移动速率要衰减.波状表面波谷处的残余应力、应变和变形大于波峰处.随滚动次数的增加,残余应力增大但很快趋于稳定,残余应变也增大但增大速率衰减.  相似文献   

4.
A viscoplastic, or yield-stress, liquid occupies the space between two infinite parallel plates. Initially the whole system is at rest. The lower plate is suddenly jerked into motion with given speed or shear stress, while the upper plate is kept fixed. The flow consists of two regions; (1) a lower sheared region bounded above by the yield surface, (2) an upper unyielded region bounded below by the yield surface. The yield surface propagates to the upper plate as time proceeds. We first consider the equivalent one plate problem of flow over a jerked plate, and find similarity solutions and small time asymptotic solutions for prescribed shear and speed cases respectively. These solutions are used as initial solutions for the two plate case. The motion of the yield surface and the time taken for the entire material to yield are investigated. The problems considered here are two dimensional representations of some control devices, for example the light duty clutch, which consists of two corotating, coaxial discs separated by a layer of electrorheological material. In this application it is useful to know the time taken for all the material to yield.  相似文献   

5.
单峰接触研究及其在分形表面接触中的应用   总被引:2,自引:1,他引:1  
基于有限元方法,建立了弹塑性单峰的接触模型.粗糙峰为理想的弹塑性材料,为了考虑不同的材料特性对微凸体变形的影响,分别对9种不同的材料进行了分析.根据有限元计算结果,分析了接触面积,平均接触压力和接触力与变形干涉量之间的关系,并进行了经验公式的拟合.单峰接触所经历的4个不同的阶段,以及不同阶段之间的转化点均作了明确的表达.然后,根据分形理论,将单峰接触模型扩展到了三维的粗糙表面的接触,并提出了一个计算接触表面法向刚度的模型.通过与实验数据和以往模型的结果对比,证明本文中所提出的模型具有较高的精度.  相似文献   

6.
A step shear load moves steadily on the surface of an elastic-plastic half space at a speed exceeding the elastic shear wave speed of the material. The orientation of the shear traction is such that the deformation is two-dimensional antiplane strain. Two different representations of the rate independent elastic-plastic material response are considered. The first material model is based on the associated flow rule and the Mises yield condition with isotropic hardening, whereas the second model is based on a particular flow theory of plasticity which represents incremental behavior at a corner of the instantaneous yield surface. Both models predict the same response under the same proportional loading. The stress history experienced by a typical material particle during passage of the load step is determined, and the variation of final strain with the magnitude of the load step is calculated. One conclusion resulting from comparison of results for the two material models for this problem is that the influence of yield surface vertex formation is not significant.  相似文献   

7.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardening rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown.  相似文献   

8.
Steady state crack propagation problems of elastic-plastic materials in Mode I, plane strain under small scale yielding conditions were investigated with the aid of the finite element method. The elastic-perfectly plastic solution shows that elastic unloading wedges subtended by the crack tip in the plastic wake region do exist and that the stress state around the crack tip is similar to the modified Prandtl fan solution. To demonstrate the effects of a vertex on the yield surface, the small strain version of a phenomenological J2, corner theory of plasticity (Christoffersen, J. and Hutchinson, J. W. J. Mech. Phys. Solids,27, 465 C 1979) with a power law stress strain relation was used to govern the strain hardening of the material. The results are compared with the conventional J2 incremental plasticity solution. To take account of Bauschinger like effects caused by the stress history near the crack tip, a simple kinematic hardening rule with a bilinear stress strain relation was also studied. The results are again compared with the smooth yield surface isotropic hardening solution for the same stress strain curve. There appears to be more potential for steady state crack growth in the conventional J2 incremental plasticity material than in the other two plasticity laws considered here if a crack opening displacement fracture criterion is used. However, a fracture criterion dependent on both stress and strain could lead to a contrary prediction.  相似文献   

9.
In previous work, the stresses of a mode I elastic–plastic fracture mechanics problem were analytically continued across a prescribed elastoplastic boundary for plane stress loading conditions involving a linear elastic/perfectly plastic material obeying the Tresca yield condition. Immediately across the elastic-plastic boundary, a nonlinear parabolic partial differential equation governs the plastic stress field. The present solution deals with stresses extending beyond the parabolic region into the hyperbolic region of the plastic zone. This analytical solution is obtained through a tranformation of the original system of nonlinear partial differential equations into a linear system with constant coefficients. The solution, so obtained, is expressible in terms of elementary transcendental functions. It also exhibits a limiting line which passes through the crack tip. This feature of the solution suggests the formation of a plastic hinge in the material.  相似文献   

10.
冯传玉 《实验力学》2007,22(3):314-322
球形压痕技术在材料力学属性,诸如硬度,弹性模量等的测量中得到了广泛的应用。应用Twyman-Green及云纹干涉法并配合相移技术,本文对IN783合金进行了一系列的球形压痕实验研究,并对残余压痕的面内(u,v)及离面(w)变形场进行了定量测量和分析。应用面内变形测量结果,进一步对试件表面的应力一应变分布进行了分析和计算,并在离面变形场的基础上,确立了压痕周围的弹塑性边界,从而进一步应用面内的分析结果,得到材料的屈服强度。应用压痕实验的接触半径和压力并配合Tabor经验公式,本文进一步得到了材料的应力应变曲线。实验结果与已知的IN783合金相吻合。对所涉及的一系列压痕实验,本文也进行了二维有限元分析并得到了比较一致的结果。  相似文献   

11.
Forlong, ductile, thick-walled tubes under internal pressure instabilities and final failure modes are studied experimentally and theoretically. The test specimens are closed-end cylinders made of an aluminum alloy and of pure copper and the experiments have been carried out for a number of different initial external radius to internal radius ratios. The experiments show necking on one side of the tubes at a stage somewhat beyond the maximum internal pressure. All tubes, except for one aluminum alloy tube, failed by shear fracture under decreasing pressure. The aluminum alloy tubes exhibited localized shear deformations in the neck region prior to fracture and also occasionally surface wave instabilities. The numerical investigation is based on an elastic-plastic material model for a solid that develops a vertex on the yield surface, using representations of the uniaxial stress-strain curves found experimentally. In contrast to the simplest flow theory of plasticity this material model predicts shear band instabilities at a realistic level of strain. A rather sharp vertex is used in the material model for the aluminum alloy, while a more blunt vertex is used to characterize copper. The theoretically predicted bifurcation into a necking mode, the cross-sectional shape of the neck, and finally the initiation and growth of shear bands from the highly strained internal surface in the neck region are in good agreement with the experimental observations.  相似文献   

12.
The edge impact of an elastic-plastic semiinfinite plate subject to conditions of plane strain is investigated analytically and experimentally. The theoretical analysis is based on the strain-rate-independent theory of plastic-wave propagation. The plate is initially unstressed; the boundary condition for the edge of the plate corresponds to constant-velocity longitudinal impact except that the step in velocity has a finite rise time. Calculations are carried out according to both the approximate one-dimensional theory and the two-dimensional theory for an elastic-plastic isotropic work-hardening material. The rise time for both solutions is chosen so as to optimize the agreement between theoretical and experimental strain-time profiles. A numerical solution of the two-dimensional equations is obtained by using a difference method developed by Clifton;1 the onedimensional approximation is solved by the well-known method of characteristics. The problem was approximated experimentally by the axial collision of 4-in.-diam annealed aluminum thick-walled cylinders with a diameter-to-wall-thickness ratio of ten. For impact velocities of 90, 130 and 160 ips (corresponding to maximum strains of 0.12, 0.22 and 0.36 percent, respectively), dispersive characteristics and maximum strain amplitudes of the strain wave are found to be in good agreement with the theoretical predictions of both solutions. However, the two-dimensional solution indicates that the stresses, strains and velocities in regions of high strain-rate are highly nonuniform across the plate thickness.  相似文献   

13.
针对接触表面变曲率的特点,引入局部坐标系,构造出局部坐标下残余应力应变场的分布状态,建立了变曲率连续啮合过程中安定状态残余应力的计算方法。该数值方法将弹塑性问题分解为弹性问题和特征应变决定的残余问题,并采用增量映射方法求解特征应变决定的残余问题,可直接得到接触安定状态下的接触残余应力,并随之进行安定极限的判定。采用该数值方法计算了不同曲率处接触点的安定极限,给出了安定极限与摩擦因数之间的关系,并与有关数值结果相比较,验证了该算法的有效性。  相似文献   

14.
15.
The problem of quasi-static compression and spreading (squeezing) of a thin viscoplastic layer between approaching absolutely rigid parallel-arranged plates is solved using asymptotic integration methods rapidly developed in recent years in the mechanics of deformable thin bodies. A solution symmetric about the coordinate axes is sought in the same region of the layer as in the classical Prandtl problem. The layer material is characterized by a yield point and a hardening function relating the intensities of the stress and strain rate tensors. The conditions of no-flow and reaching certain values by tangential stresses are imposed on the plate surfaces. The coefficients at the terms of the asymptotic expansions corresponding to the minus first and zero powers of the small geometrical parameter are obtained. An approximate analytical solution in the case of power hardening and large Saint-Venant numbers is given. The physical meaning of the roughness coefficient characterizing the cohesion between the plates and viscoplastic material is discussed.  相似文献   

16.
Second-order rate constitutive equations are formulated for a time-independent elastic-plastic material, obeying the normality flow rule with a smooth yield surface. Under specified regularity restrictions imposed on the involved fields, the regular second-order rate boundary value problem with quasistatic accelerations as unknowns is posed. It is shown that every solution of this generally non-linear rate problem is governed by a variational principle and that the corresponding functional reaches a strict absolute minimum, provided the solution satisfies a sufficient uniqueness condition. With the same incrementally linear comparison solid, Hill's exclusion condition rules out not only a first- but also a second-order bifurcation. The criticality of the exclusion condition is discussed and conditions are indicated under which a second-order bifurcation becomes possible, while the first-order rate problem is still uniquely solvable.  相似文献   

17.
Finite element modeling of elasto-plastic contact between rough surfaces   总被引:3,自引:0,他引:3  
This paper presents a finite element calculation of frictionless, non-adhesive, contact between a rigid plane and an elasto-plastic solid with a self-affine fractal surface. The calculations are conducted within an explicit dynamic Lagrangian framework. The elasto-plastic response of the material is described by a J2 isotropic plasticity law. Parametric studies are used to establish general relations between contact properties and key material parameters. In all cases, the contact area A rises linearly with the applied load. The rate of increase grows as the yield stress σy decreases, scaling as a power of σy over the range typical of real materials. Results for A from different plasticity laws and surface morphologies can all be described by a simple scaling formula. Plasticity produces qualitative changes in the distributions of local pressures in the contact and of the size of connected contact regions. The probability of large local pressures is decreased, while large clusters become more likely. Loading-unloading cycles are considered and the total plastic work is found to be nearly constant over a wide range of yield stresses.  相似文献   

18.
A mathematical formulation for the contact of rough surfaces is presented. The derivation of the contact model is facilitated through the definition of plastic asperities that are assumed to be embedded at a critical depth within the actual surface asperities. The surface asperities are assumed to deform elastically whereas the plastic asperities experience only plastic deformation. The deformation of plastic asperities is made to obey the law of conservation of volume. It is believed that the proposed model is advantageous since (a) it provides a more accurate account of elastic-plastic behavior of surfaces in contact and (b) it is applicable to model formulations that involve asperity shoulder-to-shoulder contact. Comparison of numerical results for estimating true contact area and contact force using the proposed model and the earlier methods suggest that the proposed approach provides a more realistic prediction of elastic-plastic contact behavior.  相似文献   

19.
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener–Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.  相似文献   

20.
The problem of a two-dimensional viscous fluid drop which steadily moves along a horizontal rigid surface is considered. Such motion arises if the rigid surface wettability is nonuniform. A sequence of solutions for the velocity field and the free surface shape with the successively increasing applicability region near the moving contact lines is obtained for small capillary numbers Ca. The solution of the problem is found in the case when the distortion of the free surface of the drop during motion can be neglected. The problem is then reformulated using functions of a complex variable and expanded variables are introduced. In the new variables a more accurate solution of the same problem is found, with a much more narrow inapplicability region near the moving contact lines. In the solution obtained the free surface approaches the receding contact line at an angle of 180° and the advancing line at a zero angle. The solution is applicable up to the receding contact line and here approaches the known asymptotics. Near the advancing contact line the solution is applicable until the angle between the free surface and the rigid substrate becomes of the order of Ca1/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号