首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Morita 《Physica A》1981,105(3):620-630
The distribution functions and the free energy are expressed in terms of the effective fields for the regular and random Ising models of an arbitrary spin S on the generalized cactus tree. The same expressions apply to systems on the usual lattice in the “cactus approximation” in the cluster variation method. For an ensemble of random Ising models of an arbitrary spin S on the generalized cactus tree, the equation for the probability distribution function of the effective fields is set up and the averaged free energy is expressed in terms of the probability distribution. The same expressions apply to the system on the usual lattice in the “cactus approximation”. We discuss the quantities on the usual lattice when the system or the ensemble of random systems has the translational symmetry. Variational properties of the free energy for a system and of the averaged free energy for an ensemble of random systems are noted. The “cactus approximations” are applicable to the Heisenberg model as well as to the Ising model of an arbitrary spin, and to ensembles of random systems of these models.  相似文献   

2.
A simple connection between Ising spin glasses and the Z2 lattice gauge theory, at negative plaquette temperatures, is presented. It is first shown that annealed models give useful lower bounds on the free energy and ground-state energy of spin glasses. However, they have unphysical low temperature properties (e.g. a negative entropy), which are related to a temperature dependence of the frustration. A restricted annealing scheme is presented which remedies this deficiency through the introduction of a pure gauge coupling counterterm. The possible phase diagrams of the lattice gauge system and their relevance to spin glass transitions are discussed.  相似文献   

3.
《Physics letters. [Part B]》1988,212(2):187-190
We present an action which generates the supersymmetric self-dual equations corresponding to euclidean super Yang-Mills theory in four dimensions. By adding additional constraint fields with new local symmetries, the classical equations of this system are the usual super self-dual equations when a gauge is chosen for the constraint fields. This construction is a supersymmetric generalization of the Labastida-Pernici action which corresponds to a gauge unfixed version of Witten's topological quantum field theory. We discuss some topological prospects for this model, and the role of supersymmetric instantons in Donaldson theory.  相似文献   

4.
Recently, there has been observed an interesting correspondence between supersymmetric quiver gauge theories with four supercharges and integrable lattice models of statistical mechanics such that the two-dimensional spin lattice is the quiver diagram, the partition function of the lattice model is the partition function of the gauge theory and the Yang–Baxter equation expresses the identity of partition functions for dual pairs. This correspondence is a powerful tool which enables us to generate new integrable models. The aim of the present paper is to give a short account on a progress in integrable lattice models which has been made due to the relationship with supersymmetric gauge theories and make clear notes on the special functions used by several authors.  相似文献   

5.
We introduce a lattice gas for particles with discrete momenta (1, 0, –1) and local deterministic microdynamics, which exactly reproduces Creutz's microcanonical algorithm for the ferromagnetic Ising model. However, because of the manifest gauge invariance of our variables, both the Ising ferromagnetic and spin-glass systems share precisely the same dynamics with different initial conditions. Additional conservation laws in the 1D Ising case result in a completely integrable system in the limit of zero or unbounded demon energy cutoff. Numerical investigations of ergodicity are presented for the pure Ising lattice gas in one and two dimensions.  相似文献   

6.
The duality transformation is carried out for an n-species Ising spin system interacting with Z2 gauge fields. For n > 1, we find that the dual model has topological terms when the surface is topologically nontrivial. The plaquette interaction of the gauge fields is dual to an n-spin coupling in the dual model.  相似文献   

7.
We construct a supersymmetric gauge model describing the electromagnetic interaction of anyons. This is done by means of the supersymmetric generalization of theU(1) ×U(1) gauge theory. The model contains the statisticalU(1) gauge field endowed with a Chern-Simons mass term and the electromagnetic field, both with the corresponding superpartners, coupled to matter fields. This constrained system is analyzed from the Hamiltonian point of view and the canonical quantization is found. The path-integral method is used to develop the perturbative formalism. We define suitable propagators and vertices and give the diagrammatics and the Feynman rules.  相似文献   

8.
For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields.  相似文献   

9.
We solve the problem of introducing, in supersymmetric Yang-Mills Lagrangians, a supersymmetric gauge breaking term and a Faddeev-Popov ghost interaction term. The resulting Lagrangian turns out to be invariant under a global symmetry transformation which is the supersymmetric extension of the Slavnov symmetry. We show that the complete analysis of all primitively divergent supergraphs ensures, in conjunction with the Slavnov identities, the renormalizability of the theory, once a supersymmetric and gauge invariant regularizing procedure has been introduced. We find that the simplest regularizing procedure is a generalization of the higher covariant derivatives method. In the case of interaction with matter fields we prove that no mass counter term is needed, in exact analogy with the model without gauge fields. Finally we show that, in the Abelian situation, a supersymmetric mass term for the vector multiplet can be introduced without spoiling the renormalizability, thus providing the supersymmetric extension of massive vector bosons theories.  相似文献   

10.
11.
I studied the ferrimagnetic Ising model with nearest neighbour interactions for a square lattice and simple cubic one, using mean field theory. The free energy of a mixed spin Ising ferrimagnetic model was calculated from a mean field approximation of the Hamiltonian. By minimizing the free energy, I obtained the equilibrium magnetizations and the compensation temperatures. Clear indications of the single-ion anisotropies on the compensation points of the mixed spin-3/2 and spin-5/2 ferrimagnetic lattices are found. Some interesting behaviors of these systems are obtained depending not only on the values of magnetic anisotropies for both sublattice sites but also on the lattice structure. The longitudinal magnetic fields dependence of the spin compensation temperature is the main focus of research. The possibility of many compensation temperatures is indicated.  相似文献   

12.
We realize Witten's scenario for a solution to the gauge hierarchy problem in a supersymmetric SU(7) gauge theory. Unwanted particles are made superheavy by interlocking interactions between two non-singlet fields, such that the strong interaction may remain asymptotically free up to the grand unification scale.  相似文献   

13.
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.  相似文献   

14.
Duality relations are derived between the Ising model on a square lattice wrapped on a cylinder with a defect and with free boundary conditions at the ends and the Ising model with magnetic fields applied at the ends of the cylinder. We derive as a consequence of these relations the duality relations for Ising models with free, mixed, and fixed boundary conditions at the ends of the cylinder. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 5, 369–374 (10 March 1996)  相似文献   

15.
《Physics letters. [Part B]》1987,195(3):397-406
A Coulomb gas representation for the Ramond sectors of the N = 1 supersymmetric models is constructed. The fusion rules and the 4-point functions for the Ramond fields are calculated explicitly by this method and used to describe the Z2 odd sectors of the tricritical Ising model and of the critical Kosterlitz-Thouless XY model.  相似文献   

16.
Two topics of lattice gauge theory are reviewed. They include string tension and β-function calculations by strong coupling Hamiltonian methods for SU(3) gauge fields in 3 + 1 dimensions, and a 1/N-expansion for discrete gauge and spin systems in all dimensions. The SU(3) calculations give solid evidence for the coexistence of quark confinement and asymptotic freedom in the renormalized continuum limit of the lattice theory. The crossover between weak and strong coupling behavior in the theory is seen to be a weak coupling but non-perturbative effect. Quantitative relationships between perturbative and non-perturbative renormalization schemes are obtained for the O(N) nonlinear sigma models in 1 + 1 dimensions as well as the range theory in 3 + 1 dimensions. Analysis of the strong coupling expansion of the β-function for gauge fields suggests that it has cuts in the complex 1/g2-plane. A toy model of such a cut structure which naturally explains the abruptness of the theory's crossover from weak to strong coupling is presented. The relation of these cuts to other approaches to gauge field dynamics is discussed briefly.The dynamics underlying first order phase transitions in a wide class of lattice gauge theories is exposed by considering a class of models-P(N) gauge theories - which are soluble in the N → ∞ limit and have non-trivial phase diagrams. The first order character of the phase transitions in Potts spin systems for N #62; 4 in 1 + 1 dimensions is explained in simple terms which generalizes to P(N) gauge systems in higher dimensions. The phase diagram of Ising lattice gauge theory coupled to matter fields is obtained in a 1N expansion. A one-plaquette model (1 time-0 space dimensions) with a first-order phase transitions in the N → ∞ limit is discussed.  相似文献   

17.
The vortex free energy was proposed to distinguish between the confinement and the Higgs phase (in the sense of 't Hooft) in lattice gauge theory, when matter fields are present that transform according to an arbitrary representation of the gauge group. In this paper I consider the Z(2) Higgs model and calculate the vortex free energy in the screening part of the confining/screening phase of Fradkin and Shenker. The result does not agree with the expected behavior that corresponds to the structure of the phase diagram. Therefore the vortex free energy is no longer a good indicator for confinement when matter fields transform non-trivially under the center of the gauge group (such as Z(2) Higgs scalars).  相似文献   

18.
In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the ladder lattice is infinite, while its width is finite. We investigate the phase transition and dynamic behavior of Ising model on this quasi-one-dimessional system. We use the generalized transfer matrix method to investigate the phase transition of the system. It is found that there is no nonzero temperature phase transition in this system. At the same time, we are interested in Glauber dynamics. Based on that, we obtain the time evolution of the local spin magnetization by exactly solving a set of master equations.  相似文献   

19.
In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the ladder lattice is infinite, while its width is finite. We investigate the phase transition and dynamic behavior of Ising model on this quasi-one-dimessional system. We use the generalized transfer matrix method to investigate the phase transition of the system. It is found that there is no nonzero temperature phase transition in this system. At the same time, we are interested in Glauber dynamics. Based on that, we obtain the time evolution of the local spin magnetization by exactly solving a set of master equations.  相似文献   

20.
I.G Enting 《Annals of Physics》1979,123(1):141-152
The lattice dependence of a class of gauge-invariant Ising models is investigated. Any lattice dependence would indicate that the lattice could not be regarded as irrelevent and that it would be incorrect to define gauge models on a lattice as a basis for investigating the continuum limit. The models investigated lie within the class of multispin Ising models which show a wide variety of lattice-dependent behaviour and so these models should provide a significant test of the importance of the gauge-invariance constraint. Two and three dimensional models are investigated and lattice independence is confirmed. This indicates that imposing gauge symmetries on lattice models can restrict the possible behaviour in such a way that lattice independent continuum limits can be defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号