首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of ‘Dixon’ techniques based on fast spin echo (FSE) sequence have been proposed and successfully used in many branches of medicine. Some require only one scan, but most of them need multiple scans and long scan times. This article describes a new fast triple-spin-echo Dixon (FTSED) technique suitable for ultra-high field MRI, in which three specific time shifts are introduced in the echo train; thus, three images with defined water-fat phase-differences (0, π, 2π) are encoded in the phase of the acquired images without extreme restrictions upon the echo duration. The water and fat images are then calculated by iterative least-squares estimation method. The sequence was successfully implemented at a 9.4 T ultra-high field MRI system and tested on a phantom and a rat.  相似文献   

2.
Uniform suppression of fat signal is desired in clinical applications. Based on phase differences introduced by different chemical shift frequencies, Dixon method and its variations are used as alternatives of fat saturation methods, which are sensitive to B0 inhomogeneities. Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) separates water and fat images with flexible echo shifting. Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER, alternatively termed as BLADE), in conjunction with IDEAL, yields Turboprop IDEAL (TP-IDEAL) and allows for decomposition of water and fat signal with motion correction. However, the flexibility of its parameter setting is limited, and the related phase correction is complicated. To address these problems, a novel method, BLADE-Dixon, is proposed in this study. This method used the same polarity readout gradients (fly-back gradients) to acquire in-phase and opposed-phases images, which led to less complicated phase correction and more flexible parameter setting compared to TP-IDEAL. Parallel imaging and undersampling were integrated to reduce scan time. Phantom, orbit, neck and knee images were acquired with BLADE-Dixon. Water–fat separation results were compared to those measured with conventional turbo spin echo (TSE) Dixon and TSE with fat saturation, respectively, to demonstrate the performance of BLADE-Dixon.  相似文献   

3.
In gradient echo imaging the in-plane susceptibility gradient causes an echo shift which results in signal loss. The loss of signal becomes more severe in gradient echo EPI, due to the low amplitude of the gradient which is applied in the phase-encoding direction during a long echo train. As the readout gradient amplitude is set to be very high in gradient echo EPI, the echo shift in the readout direction is negligible compared to that in the phase-encoding direction. Traditionally, a z-shimming technique has been applied to the phase-encoding direction of gradient echo EPI to restore the lost signal. This technique, however, requires a significant increase of scan time, as is also the case with the through-plane z-shimming technique. A new approach that allows one to restore the lost signal is to acquire additional phase-encoding lines beyond the regular phase-encoding range. The extension of the phase-encoding lines prior to the regular phase-encoding range exploits the delay time for optimum echo time of the BOLD sensitivity. Therefore, scan time is increased only for the extended phase-encoding lines posterior to the regular phase-encoding range. This technique has been confirmed experimentally by imaging human subject's heads at 3T.  相似文献   

4.
The 3D fast asymmetric spin echo (FASE) method combines the half-Fourier technique and 3D fast spin echo (FSE) sequence. The advantage of this method is that it maintains the same spatial resolution as FSE while markedly reducing the imaging time. The purpose of the present study was to evaluate the usefulness of the 3D FASE technique in displaying the inner ear structure using phantom and volunteer studies. 3D FSE sequence images were obtained for comparison, and the optimum 3D FASE sequence was investigated on a 1.5T MR scanner. The results of phantom experiments showed increased signal-to-noise ratio (SNR) with prolonging repetition time (TR) on both 3D FASE and 3D FSE sequences. Although the SNR of 3D FASE images was 20-25% lower than that of 3D FSE images with the same TR, the SNR per minute with 3D FASE was about twice that with 3D FSE. On 3D FASE images, a higher spatial resolution was obtained with 2- or 4-shot images than with single-shot images. However, no significant difference was observed between 2-shot and 4-shot images. In the volunteer study, 3D FASE images using a TR of 5000 ms and an effective echo time (TEeff) of 250 ms showed a high SNR and spatial resolution and provided excellent contrast between cerebrospinal fluid and nerves in the internal auditory canal. The highest contrast was achieved in the 2-shot/2 number of excitations sequence. 3D FASE provides the same image quality as 3D FSE with a significant reducing in imaging time, and gives strong T2-weighted images. This method enables detailed visualization of the tiny structures of the inner ear.  相似文献   

5.
Pediatric oncology patients with large metallic prostheses were imaged with one of two MR imaging techniques: 1) the "tilted view-angle" technique, 2) or a higher readout bandwidth technique. The tilted view-angle method uses an additional gradient in the slice selection direction during readout. The high bandwidth technique increases the readout bandwidth and shortens the echo time (TE). High bandwidth and short echo times were implemented in both T(1)-weighted (T(1)W) turbo spin echo and turbo short tau inversion recovery (STIR) sequences. Both imaging techniques reduced the size of metal-induced image artifacts. The tilted view-angle method reduced the artifact to a greater degree but had inherent shortcomings. The reformatted images were blurred and shifted. The area of interest was often moved outside of the field of view, unless parameters were adjusted on the basis of a pre-scan calculation. The high readout bandwidth, short echo technique required no special preparation and reduced metal artifacts without image blurring. The combination of high-bandwidth, shorter echo turbo STIR and T(1)W turbo spin echo sequences with subtraction of pre- from post-contrast images allowed effective fat suppression without local field inhomogeneity affects. This greatly improved our ability to evaluate suspected disease near metallic implants in pediatric cancer patients.  相似文献   

6.
The purpose of this study was to systematically investigate the effect of varying the echo time (TE) values and angle of the tendon to the main magnetic field (B(o)) upon the signal intensity observed with the magic angle phenomenon in tendons among most commonly used MR pulse sequences, including conventional spin echo (CSE), fast spin echo (FSE) and gradient echo (GRE) sequences. The intact bovine Achilles tendon was imaged using a clinical 1.5-T MR scanner. Magic angle phenomenon occurs in CSE, FSE and GRE sequences with different grade, appearing most severe in CSE, middle in FSE, and weakest in GRE sequence. In addition, the tendon signal changes produced by the magic angle phenomenon could be greatly reduced by increasing the TE to above a certain critical value in all three sequences. These critical TE values were different among CSE (40 msec), FSE (70 msec), and GRE (30 msec) sequences.  相似文献   

7.
The purpose of this study is to quantitatively compare the image quality and efficiency provided by widely available fast MR imaging pulse sequences. A composite phantom with various T1 and T2 values and subjected to periodic motion was imaged at 1.5 T. The fast MRI sequences evaluated included fast spin-echo (FSE), single shot fast spin-echo (SSFSE), echo-planar imaging (EPI), multi-slice gradient recalled (MPGR), fast MPGR (FMPGR), and fast multi-slice spoiled gradient echo (FMPSPGR). T1-weighted (T1WI), T2-weighted (T2WI), proton-density-weighted (PDWI), and T2*-weighted (T2*WI) images were evaluated in breath-hold and non-breath-hold time frames. Analysis included measurement of image signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), nonuniformity, ghosting ratio, SNR per unit time and CNR per unit time. Among fast T2WI sequences, FSE with breath-hold time frame resulted in the highest image quality and in superior SNR and CNR efficiency by a factor of 5 or 6 as compared with conventional spin echo sequence. Among fast T1WI sequences, FMPGR and FMPSPGR both with non-breath-hold time frame produced the highest image quality and SNR and CNR efficiency by a factor of greater than 5 as compared with conventional spin echo. Among fast PDWI and T2*WI sequences, FSE produced the highest SNR and CNR, and was maximally efficient with a factors of greater than 6 as compared with conventional spin echo.  相似文献   

8.
Static gradient electron spin echo projection reconstruction imaging is favourable for X-band material science applications requiring temperature variation with a metal cryostat. To prevent imaging artefacts due to the high conduction electron diffusion coefficient in the preferred conduction direction of quasi-one-dimensional conductors, only pulsed gradient phase encoding for that direction can be tolerated. We present results of an appropriate cylindrical imaging scheme combining both methods. Conduction electron spin density images with 13 x 13 x 17 microm(3) volume element size or spin-lattice relaxation time images with inversion recovery sequence and 13 x 13 x 68 microm(3) volume element size are presented for fluoranthene radical cation salt single crystals of typical sizes of 0.4 x 0.4 x 1 mm(3).  相似文献   

9.
The collection of fast imaging techniques that use multiple spin-echo (MSE) sequences relies on a precise phase relationship between spin echoes and stimulated echoes that form along the radiofrequency refocusing pulse train. Failure to achieve this condition produces dark banding artifacts that result from destructive interference between signal coherence pathways. Satisfying this condition on the microsecond timescale required is technically challenging for conditions involving strong diffusion-weighted gradients, for arbitrary orientation acquisitions and at large field strengths with high-resolution acquisitions. Two clinically significant MSE sequences, fast spin echo (FSE) and balanced steady-state free precession (b-SSFP), are investigated in this work using a 4-T whole-body scanner. We developed a readout-projection-based prescan technique that ensures coherent signal formation by utilizing banding artifacts to automatically adjust gradient balance. Subsequent image acquisition using the results of this prescan permits the formation of coherent-echo images, which are robust under challenging imaging conditions. The robustness of this approach is demonstrated for FSE and b-SSFP images obtained from the knees of human volunteers. We believe that the use of this prescan calibration technique for the alignment of signal pools in MSE sequences is critical at high fields and will facilitate the implementation of high-quality clinically significant sequences such as FSE and b-SSFP.  相似文献   

10.
A fast spin echo two-point Dixon (fast 2PD) technique was developed for efficient T2-weighted imaging with uniform water and fat separation. The technique acquires two interleaved fast spin echo images with water and fat in-phase and 180° out-of-phase, respectively, and generates automatically separate water and fat images for each slice. The image reconstruction algorithm uses an improved and robust region-growing scheme for phase correction and achieves consistency in water and fat identification between different slices by exploiting the intrinsic correlation between the complex images from two neighboring slices. To further lower the acquisition time to that of a regular fast spin echo acquisition with a single signal average, we combined the fast 2PD technique with sensitivity encoding (SENSE). Phantom experiments show that the fast 2PD and SENSE are complementary in scan efficiency and signal-to-noise ratio (SNR). In vivo data from scanning of clinical patients demonstrate that T2-weighted imaging with uniform and consistent fat separation, including breath-hold abdominal examinations, can be readily performed with the fast 2PD technique or its combination with SENSE.  相似文献   

11.
Cavernous angiomas or cavernomas are vascular malformations, which may be associated with risk of bleeding episodes. We present a case report comparing high resolution 8 Tesla gradient echo (GE) imaging with routine fast spin echo (FSE) at 1.5 Tesla in a patient with venous cavernoma. A 55-year-old male with a history of hemorrhagic stroke was studied using high-resolution 8 Tesla magnetic resonance imaging (MRI) system, which revealed venous cavernoma (9 x 8.6 mm) in the left parietal region and visualized adjacent microvascular supply. Signal loss was prominent in the cavernoma region compared to surrounding brain tissue, and signal intensity declined by factor 7.3 +/- 2.4 (679 +/- 62%) on GE images at 8 Tesla. Cavernoma was not apparent on routine T(2)-weighted FSE images at 1.5 Tesla MRI. This case report indicates that GE images at 8 Tesla can be useful for evaluation of vascular pathologies and microvasculature.  相似文献   

12.
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed — image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ± 32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times — without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE.  相似文献   

13.
Spatial Modulation of Magnetization is shown to provide a means of estimating perceived spatial resolution directly in vivo. On the first magnetic resonance system tested, resolution in conventional spin echo images was found to be stability limited in the phase encoding direction and voxel limited (via the Nyquist sampling theorem) in the frequency encoding direction both in vitro and in vivo. As the voxel size approaches half the stripe separation, fringes of resolved and unresolved stripes are formed across the image. This phenomenon is explained and described mathematically. On a second magnetic resonance scanner, resolution in the phase encoding direction of fast spin echo images with centrically ordered phase encoding is shown to be voxel limited in substances with long T2, with poorer resolution in substances with short T2. Resolution in fast spin echo images with linearly ordered phase encoding was shown to be voxel limited in the phase encoding direction.  相似文献   

14.
PurposeTo reduce artifacts and scan time of GRASE imaging by selecting an optimal sampling pattern and jointly reconstructing gradient echo and spin echo images.MethodsWe jointly reconstruct images for the different echo types by considering these as additional virtual coil channels in the novel Autocalibrated Parallel Imaging Reconstruction with Sampling Pattern Optimization for GRASE (APIR4GRASE) method. Besides image reconstruction, we identify optimal sampling patterns for the acquisition. The selected optimal patterns were validated on phantom and in-vivo acquisitions. Comparison to the conventional GRASE without acceleration, and to the GRAPPA reconstruction with a single echo type was also performed.ResultsUsing identified optimal sampling patterns, APIR4GRASE eliminated modulation artifacts in both phantom and in-vivo experiments; mean square error (MSE) was reduced by 78% and 94%, respectively, compared to the conventional GRASE with similar scan time. Both artifacts and g-factor were reduced compared to the GRAPPA reconstruction with a single echo type.ConclusionAPIR4GRASE substantially improves the speed and quality of GRASE imaging over the state-of-the-art, and is able to reconstruct both spin echo and gradient echo images.  相似文献   

15.
Gradient moment nulling techniques for refocussing of spin dephasing resulting from movement during application of magnetic resonance imaging gradients have gained widespread application. These techniques offer advantages over conventional imaging gradients by reducing motion artifacts due to intraview motion, and by recovering signal lost from spin dephasing. This paper presents a simple technique for designing multiecho imaging gradient waveforms that refocus dephasing from the interaction of imaging gradients and multiple derivatives of position. Multiple moments will be compensated at each echo. The method described relies on the fact that the calculation of time moments for nulled moment gradient waveforms is independent of the time origin chosen. Therefore, waveforms used to generate the second echo image for multiple echo sequences with echo times given by TEn = TE1 + (n - 1) * (TE2 - TE1) may also be used for generation of the third and additional echo images. All echoes will refocus the same derivatives of position. Multiecho, multimoment refocussing (MEM-MO-RE) images through the liver in a patient with ampullary adenocarcinoma metastatic to the liver demonstrate the application of the method in clinical scanning.  相似文献   

16.
Sensitivity-encoded phase undersampling has been combined with simultaneous slice excitation to produce a parallel MRI method with a high volumetric acquisition acceleration factor without the need for auxiliary stepped field coils. Dual-slice excitation was produced by modulating both spin and gradient echo sequences at +/-6 kHz. Frequency aliasing of simultaneously excited slices was prevented by using an additional gradient applied along the slice axis during data acquisition. Data were acquired using a four-channel receiver array and x4 sensitivity encoding on a 1.5 T MR system. The simultaneous parallel inclined readout image technique has been successfully demonstrated in both phantoms and volunteers. A multiplicative image acquisition acceleration factor of up to x8 was achieved. Image SNR and resolution was dependent on the ratio of the readout gradient to the additional slice gradient. A ratio of approximately 2:1 produced acceptable image quality. Use of RF pulses with additional excitation bands should enable the technique to be extended to volumetric acquisition acceleration factors in the range of x16-24 without the SNR limitations of pure partially parallel phase reduction methods.  相似文献   

17.
Dynamic nuclear polarization of metabolically active compounds labeled with (13)C has been introduced as a means for imaging metabolic processes in vivo. To differentiate between the injected compound and the various metabolic products, an imaging technique capable of separating the different chemical-shift species must be used. In this paper, the design and testing of a pulse sequence for rapid magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized (13)C is presented. The pulse sequence consists of a small-tip excitation followed by a double spin echo using adiabatic refocusing pulses and a "flyback" echo-planar readout gradient. Key elements of the sequence are insensitivity to calibration of the transmit gain, the formation of a spin echo giving high-quality spectral information, and a small effective tip angle that preserves the magnetization for a sufficient duration. Experiments in vivo showed three-dimensional coverage with excellent spectral quality and SNR.  相似文献   

18.
Quantitative, apparent T(2) values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T(2) values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy-proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 x 1.1 x 4 mm(3) was obtained in 10.7 min, resulting in data sets suitable for generating high-quality images with variable T(2)-weighting and for evaluating quantitative T(2) values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T(1)- and T(2)-weighted signal intensities and available histopathology reports, yielded significantly (P<.0001) longer apparent T(2) values in suspected healthy tissue (193+/-49 ms) vs. suspected cancer (100+/-26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T(2)-weighted fast spin echo (FSE) imaging alone, including quantitative T(2) values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time FSE sequences.  相似文献   

19.
The purpose of this study was to assess the degree of conspicuity and amount of field distortion caused by a biopsy needle designed specifically for use in MRI studies. Toward this, a number of pulse sequences including spin and field echo were used. Parameters such as field of view, strength of read gradient, direction of read gradient, echo time and slice thickness were varied. The effect of these manipulations on needle visualization was studied. Partial voluming errors with thicker slices decreased needle conspicuity. Smaller field of view improved needle visualization as a result of magnification effect. Shallow read gradient strengths also increased needle conspicuity. Increased image artifacts were noted on field-echo sequences compared to spin echo. This effect increased with longer echo times. This reflects T2* effects on field-echo images.  相似文献   

20.
ObjectiveTo quantitatively evaluate induced phase errors in fast spin echo (FSE) signals due to low frequency electromagnetic inference (EMI).MethodsSpecific form of Bloch equation is numerically solved in time domain for two different FSE pulse sequences (ETL = 8) with two different bandwidths. A single spin is modeled at x = 10 cm, EMI frequencies are simulated from 1 to 1000 Hz and phase errors at different echo times are calculated.ResultsPhase errors in the received echo signals induced by EMI are significantly higher at low frequencies (< 200 Hz) than at high frequencies and the phase errors at low frequencies can be effectively reduced by using high receiving bandwidth.ConclusionPulse sequence bandwidth can be used to control the phase errors in the FSE signals due to low frequency EMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号