首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can estimate parameters relating to blood flow and tissue volume fractions and therefore may be used to characterize the response of breast tumors to treatment. To assess treatment response, values of these DCE-MRI parameters are observed at different time points during the course of treatment. We propose a method whereby DCE-MRI data sets obtained in separate imaging sessions can be co-registered to a common image space, thereby retaining spatial information so that serial DCE-MRI parameter maps can be compared on a voxel-by-voxel basis. In performing inter-session breast registration, one must account for patient repositioning and breast deformation, as well as changes in tumor shape and volume relative to other imaging sessions. One challenge is to optimally register the normal tissues while simultaneously preventing tumor distortion. We accomplish this by extending the adaptive bases algorithm through adding a tumor-volume preserving constraint in the cost function. We also propose a novel method to generate the simulated breast magnetic resonance (MR) images, which can be used to evaluate the proposed registration algorithm quantitatively. The proposed nonrigid registration algorithm is applied to both simulated and real longitudinal 3D high resolution MR images and the obtained transformations are then applied to lower resolution physiological parameter maps obtained via DCE-MRI. The registration results demonstrate the proposed algorithm can successfully register breast MR images acquired at different time points and allow for analysis of the registered parameter maps.  相似文献   

2.
3.
An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.  相似文献   

4.
Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.  相似文献   

5.
气象卫星所携带的多种传感器可以获得可见光、红外、多光谱等多模态的卫星图像,目前处理这些多模态图像的一个重要手段是数据融合分析方法,而获取不同模态图像空间对应关系的图像配准是数据融合分析的前提和基础。针对多模态气象卫星图像的配准问题,重点研究红外图像和可见光图像的配准问题,并根据红外图像和可见光图像的特点,提出了一种由粗到精的两阶段配准方法。在粗配准阶段,将Fourier-Mellin变换应用于红外和可见光图像的边缘图像上,并通过变换图像在频域的关系实现了图像配准仿射变换参数的快速计算;在精配准阶段,基于图像的Harris算子检测红外图像和可见光图像的特征点,并通过特征点局部区域的互相关函数实现特征点的匹配,最终通过匹配特征点求得精确配准的变换参数。文章提出的由粗到精的图像配准方法,有效结合了Fourier-Mellin变换对边缘图像配准的高效性和Harris算子图像配准的准确性,是红外和可见光图像配准的一种新方法。利用FY-2D气象卫星获取的红外和可见光图像进行了配准实验,实验结果表明所提出的方法具有良好的鲁棒性和较高的配准精度。  相似文献   

6.
Population-based studies indicate that between 5 and 9 percent of US children exhibit significant deficits in mathematical reasoning, yet little is understood about the brain morphological features related to mathematical performances. In this work, deformation-based morphometry (DBM) analyses have been performed on magnetic resonance images of the brains of 79 third graders to investigate whether there is a correlation between brain morphological features and mathematical proficiency. Group comparison was also performed between Math Difficulties (MD-worst math performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender matched subjects. DBM analysis is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a common space. To evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms have been used: (1) the Adaptive Bases Algorithm (ABA); (2) the Image Registration Toolkit (IRTK); (3) the FSL Nonlinear Image Registration Tool; (4) the Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude (DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) was used to quantify local volumetric changes. Results show there are no statistically significant volumetric differences between the NC and the MD groups using JAC. However, DBM analysis using DFM found statistically significant anatomical variations between the two groups around the left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of agreement between at least two algorithms based on voxel-wise analysis were used to define Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. Correlations between average DFM values and standard mathematical scores over these regions were found to be significant. We also found that the choice of registration algorithm has an impact on DBM-based results, so we recommend using more than one algorithm when conducting DBM studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain anatomical features related to mathematical performance in a relatively large population of children.  相似文献   

7.
Kidney function can be accessed by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measurements which yield spatially resolved maps of physiological parameters like perfusion or filtration. The motion of the kidneys during the scan is a dominant limitation of the measurement quality, and image registration is necessary for accurate quantification. We analyzed the feasibility of applying an algorithm, originally developed for multimodal registration, to kidney perfusion time series. The algorithm uses a variational calculation scheme to align the images. In four out of five data sets, kidney motion could be reduced to below the spatial resolution of the images of 1.6 mm while preserving the enhancement pattern of kidney perfusion. Fitting a pharmacokinetic model to the data showed an average reduction of the Akaike fit error of 10% for the registered data, suggesting more stable parameters. We conclude that this image registration algorithm is feasible for correcting kidney motion in renal DCE-MRI.  相似文献   

8.
多光谱CCD相机配准的图像校正   总被引:2,自引:0,他引:2  
郭悦  杨桦 《光学技术》2003,29(2):229-231
通过分析线阵CCD的成像过程,对多光谱CCD相机成像的彩色图像合成方式进行了研究,提出了一种处理方法。通过将各谱段CCD的每个像元信号分别扩展成一个二维像素数组后再进行彩色合成,尝试了利用后期处理的方式校正多光谱相机的配准偏差,改善了相机彩色合成图像的质量。结果表明,这种对CCD信号进行处理的合成方式为空间遥感相机的研制提供了一种技术手段,既能减小配准偏差的影响,同时又能够在不改变相机性能的情况下改善相机输出彩色图像的质量。  相似文献   

9.
Wang B  Shen Y 《Ultrasonics》2006,44(Z1):e79-e83
Using mutual information as a criterion for medical image registration, which requires no prior segmentation or preprocessing, has been both theoretically and practically proved to be an effective method in these years. However, this technique is confined in registering two images and hard to apply to multiple ones. The reason is that unlike mutual information between two variables, high-dimensional mutual information is ill defined. In textbooks and theoretical essays, three-dimensional mutual information is proposed based on Venn diagram. Unfortunately, mutual information defined in this way is not necessarily nonnegative. In order to overcome the problem, in this paper, we introduce the mutual information matrix. By calculating its eigenvalues, high-dimensional mutual information is defined. This definition is nonnegative, bounded, and could be extended to higher dimensions, thus enables us to register more than three images. In the end, this definition is tested and proved to be effective on registration of multiple US images through simulation.  相似文献   

10.
新的Cauchy-Schwarz距离函数与多模态医学图像配准   总被引:1,自引:0,他引:1  
时永刚 《光学技术》2005,31(5):684-687
信息论测度,特别是Shannon互信息是多模态图像配准的一种重要方法,但除了互信息之外,仍然存在其它的函数来实现这一任务。对互信息、Kullback-Leibler距离和Shannon不等式之间相互关系作了分析,根据这些关系和不等式理论,提出了新的Cauchy-Schwarz距离,并将这一距离测度用于多模态医学图像的配准处理。从计算速度、噪声容忍性、测度函数图形的特点和图像窗口大小影响等几个方面,通过MR和PET医学图像的实验分析,对新的Cauchy-Schwarz距离测度和典型的Shannon信息论测度进行了分析比较。实验结果表明,新的Cauchy-Schwarz距离测度函数同样可以用于多模态图像配准,而且有着更强的噪声容忍性和更为节省的计算量。  相似文献   

11.
Dynamic contrast-enhanced MRI (DCE-MRI) was used to noninvasively evaluate the effects of AG-03736, a novel inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, on tumor microvasculature in a breast cancer model. First, a dose response study was undertaken to determine the responsiveness of the BT474 human breast cancer xenograft to AG-013736. Then, DCE-MRI was used to study the effects of a 7-day treatment regimen on tumor growth and microvasculature. Two DCE-MRI protocols were evaluated: (1) a high molecular weight (MW) contrast agent (albumin-(GdDTPA)(30)) with pharmacokinetic analysis of the contrast uptake curve and (2) a low MW contrast agent (GdDTPA) with a clinically utilized empirical parametric analysis of the contrast uptake curve, the signal enhancement ratio (SER). AG-013736 significantly inhibited growth of breast tumors in vivo at all doses studied (10-100 mg/kg) and disrupted tumor microvasculature as assessed by DCE-MRI. Tumor endothelial transfer constant (K(ps)) measured with albumin-(GdDTPA)(30) decreased from 0.034+/-0.005 to 0.003+/-0.001 ml min(-1) 100 ml(-1) tissue (P<.0022) posttreatment. No treatment-related change in tumor fractional plasma volume (fPV) was detected. Similarly, in the group of mice studied with GdDTPA DCE-MRI, AG-013736-induced decreases in tumor SER measures were observed. Additionally, our data suggest that 3D MRI-based volume measurements are more sensitive than caliper measurements for detecting small changes in tumor volume. Histological staining revealed decreases in tumor cellularity and microvessel density with treatment. These data demonstrate that both high and low MW DCE-MRI protocols can detect AG-013736-induced changes in tumor microvasculature. Furthermore, the correlative relationship between microvasculature changes and tumor growth inhibition supports DCE-MRI methods as a biomarker of VEGF receptor target inhibition with potential clinical utility.  相似文献   

12.
王远军  刘玉 《波谱学杂志》2018,35(4):457-464
传统的图像配准通常指定一幅参考图像在配准过程中保持不变,将另一幅图像变换到参考图像空间,使得两幅图像在空间上互相匹配,从而可以精确比较两者之间的差异.针对多幅个体差异较大的图像配准问题,如果指定一幅作为参考,将其他图像配准到参考图像空间,则会引入该幅参考图像的个体形状偏差,从而影响最终的对比结果.为此,本文首先介绍了目前针对该问题的主要解决方法,然后提出了基于图像集拓扑中心的群体配准方法——TopologyCenter.为验证所提出的群体配准方法的性能,通过使用国外公开的数据集,详细比较了本文提出的方法与当前两种主要方法的群体配准结果的差异.实验结果表明,本文提出的方法具有更小的群体配准偏差,群体配准结果更好;同时,在对实验结果的评价中,本文还提出了一种简捷的群体偏差度量指标.  相似文献   

13.
14.
为适应智能电能表自动化检定的要求,设计了由图像处理技术完成外观检测功能的系统,实现了外观检查的自动化,解决了人工检测方法工作量大、效果不佳的问题。系统采用高性能CCD相机完成图像采集,确保图像信息丰富完整。利用图像平滑去噪、形态学处理等技术完成图像的预处理,大幅降低后续比对的难度。运用基于高斯金字塔的混合配准算法完成图像配准,最终实现待检图像与模板图像之间匹配程度的检测。该方法检测时间短,正确率高,已成功应用于省级计量中心电能表自动化检定线,满足生产需求。  相似文献   

15.
In nonrigid image registration, similarity measures including spatial information have been shown to perform better than those measures without spatial information. In this work, we provide new insight to the relationships among regional mutual information, regional probability distribution functions (PDFs) and global PDFs, and propose a novel nonrigid registration scheme with spatially weighted global probability distribution function (SWGPDF). Similarity measures based on SWGPDF (SWGPDFSM) are constructed. Three different spatial sub-region division methods are compared: the equally spaced sub-region (ESSR), the local binary pattern sub-region (LBPSR) and the gradient sub-region (GSR). The registration scheme applies B-spline based free form deformations (FFDs) as the transformation model. A Parzen window and linear interpolation are used to construct histograms. The SWGPDFSM registration scheme with ESSR space division is compared with the traditional global mutual information (gMI), the traditional global normalized mutual information (gNMI), regional mutual information and the SWGPDFSM with LBPSR or GSR space division. The test results show that SWGPDFSM scheme with ESSR space division outperforms the other schemes for elastically aligning images in the presence of big geometrical transformations, bias fields and illumination changes.  相似文献   

16.
A new solution to overcome the constraints of multimodality medical intra-subject image registration is proposed, using the mutual information (MI) of image histogram-oriented gradients as a new matching criterion. We present a rigid, multi-modal image registration algorithm based on linear transformation and oriented gradients for the alignment of T2-weighted (T2w) images (as a fixed reference) and diffusion tensor imaging (DTI) (b-values of 500 and 1250 s/mm2) as floating images of three patients to compensate for the motion during the acquisition process. Diffusion MRI is very sensitive to motion, especially when the intensity and duration of the gradient pulses (characterized by the b-value) increases. The proposed method relies on the whole brain surface and addresses the variability of anatomical features into an image stack. The sparse features refer to corners detected using the Harris corner detector operator, while dense features use all image pixels through the image histogram of oriented gradients (HOG) as a measure of the degree of statistical dependence between a pair of registered images. HOG as a dense feature is focused on the structure and extracts the oriented gradient image in the x and y directions. MI is used as an objective function for the optimization process. The entropy functions and joint entropy function are determined using the HOGs data. To determine the best image transformation, the fiducial registration error (FRE) measure is used. We compare the results against the MI-based intensities results computed using a statistical intensity relationship between corresponding pixels in source and target images. Our approach, which is devoted to the whole brain, shows improved registration accuracy, robustness, and computational cost compared with the registration algorithms, which use anatomical features or regions of interest areas with specific neuroanatomy. Despite the supplementary HOG computation task, the computation time is comparable for MI-based intensities and MI-based HOG methods.  相似文献   

17.
Because of a different imaging mechanism and highly complexity of body tissues and structures. Different modality medical images provide non-overlay complementary information. This has very important significance for multimodal medical image registration. Image registration is the first and key part of problem to be solved in the integrations. When the spatial position of two medical images is same, the registration could be achieved. For two CT and PET images, the principal axis method is adopted to achieve the rough registration. The modified simplex algorithm is employed to implement global search using the mutual information as similarity measure. The initial registration parameters are achieved through principal axis Based on the results of test, improved simplex method can adjust reflecting distance. Stepped-up optimization algorithm on the new experimental points through the methods of “reflection”, “enlargement”, “shrinkage” or “global systolic”. A mutual information registration based on modified simplex optimization method is presented in this paper to improve the speed of medical image registration.Results indicate that the proposed registration method prevents the optimizing process from falling into local extremum and improves the convergence speed while keeping the precision. The accurate registration of multimodal image with different resolutions is achieved.  相似文献   

18.
In this paper, symbol-error-rate (SER) performance analysis is provided for decode-and-forward (DF) and amplify-and-forward (AF) cooperation schemes in wireless networks with imperfect channel information. We derive closed-form SER formulations for a single relay system with square MQAM signals in a flat Rayleigh fading channel. Moreover, closed-form and high SNR tight SER approximations are established to show the asymptotic performance of the cooperation protocols. Simulations and comparisons verify that these approximations lead to similar results to those from the exact SER formulations for different power allocation methods. Furthermore, based on these SER performance analyses, we determine the optimum power allocation for the AF and DF cooperation scenarios.  相似文献   

19.
赵辽英  吕步云  厉小润  陈淑涵 《物理学报》2015,64(12):124204-124204
为了进一步提高遥感图像配准精度, 提出了尺度不变特征变换(SIFT)结合区域互信息优化的遥感图像配准方法. 首先利用混沌序列的随机性和遍历性, 提出一种混沌量子粒子群优化(CQPSO)算法, 在量子粒子群优化(QPSO)算法迭代陷入早熟收敛时, 采用一种新的机理引入混沌序列, 进化粒子克服早熟. 图像配准算法分为预配准和精配准两个过程. 基于SIFT算法提取特征点, 经匹配和有效地外点排除完成预配准, 然后对匹配特征点坐标进行亚像素级微调, 通过最小二乘法求得一系列匹配参数构造初始粒子群, 最后利用混沌量子粒子群优化区域互信息完成精配准, 得到最优匹配参数. 用一些标准测试函数对所提出的CQPSO和QPSO及粒子群优化(PSO)算法进行了实验比较, 另外, 对SIFT, SIFT结合PSO算法优化区域互信息, SIFT结合QPSO算法优化区域互信息和SIFT结合CQPSO算法优化区域互信息(SRC)等四种算法进行了不同分辨率遥感图像配准实验比较和不同时相遥感图像配准实验比较, 实验结果验证了所提出的CQPSO算法的优越性和SRC配准方法的有效性.  相似文献   

20.
Automatic image registration for MRI applications generally requires many iteration loops and is, therefore, a time-consuming task. This drawback prolongs data analysis and delays the workflow of clinical routines. Recent advances in the massively parallel computation of graphic processing units (GPUs) may be a solution to this problem. This study proposes a method to accelerate registration calculations, especially for the popular statistical parametric mapping (SPM) system. This study reimplemented the image registration of SPM system to achieve an approximately 14-fold increase in speed in registering single-modality intrasubject data sets. The proposed program is fully compatible with SPM, allowing the user to simply replace the original image registration library of SPM to gain the benefit of the computation power provided by commodity graphic processors. In conclusion, the GPU computation method is a practical way to accelerate automatic image registration. This technology promises a broader scope of application in the field of image registration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号