首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The salient features of shock and isentropic action on gas-liquid media are investigated using a wide-range equation of state for water and vapor. The effect of the pressure and the vapor (gas) content on the speed of sound in the gas-liquid mixture is considered. The parameters of incident and reflected wave in the gas-liquid medium are obtained on the basis of the Rankine-Hugoniot relations for the cases of isothermal, adiabatic, and shock compression of the gas component. It is shown that when the Rankine-Hugoniot equations of the shock compression of the mixture are used within the framework of the single-velocity, two-temperature model with the same pressure and under the condition of the additivity-in-mass of the internal energy of the mixture, each fraction is compressed in accordance with its own individual shock adiabat equation. The calculated and experimental data on the acoustic and shock wave propagation in vapor- and gas-liquid media and their reflection from barriers are compared.  相似文献   

3.
The two-phase liquid-vapor system in a state of thermodynamic equilibrium is considered. If a shock wave propagates in this medium, during its passage the material undergoes shock compression and transforms into a new equilibrium state. Not only the initial velocity changes in this case, but so does the quantitative composition of the phases. Due to the complication of the process, analytic results have practically not been available so far. Calculations of parameters behind the shock discontinuity were carried out approximately by using various tables and nomograms, restricted basically to only one two-phase system, H2O. Thus, condensation jumps were treated in [1–4] in two-phase supersonic flows within the single-velocity model and a low content of the liquid phase in the mixture. Using the assumptions mentioned, the various parameters were found at the front of the shock wave by numerical solution of the conservation equations of mass, momentum, and energy at the discontinuity. The thermodynamic parameters are usually given in tabulated form as a function of pressure or temperature for equilibrium conditions of the phases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 81–87, September–October, 1977.  相似文献   

4.
The expansion isentropes of the explosion products of two TNT/RDX compositions (50/50 and 25/75) have been investigated. Attention is concentrated on the little-studied region of pressures below 100 kbars. Data on the expansion isentropes were obtained by measuring the shock wave parameters in various media (aluminum, plexiglas, polystyrene foam, argon, air). Points were obtained on the shock Hugoniots of argon precom-pressed to 10, 15, and 50 atm. An equation of state of the explosion products that satisfactorily describes the experimental material obtained is formulated.In conclusion the authors thank L. V. Al'tshuler for his constant interest in their work and valuable advice and N. M. Filipchuk and I. A. Dolgov for assisting with the experiments.  相似文献   

5.
Special curves, called shock polars, are frequently used to determine the state of the gas behind an oblique shock wave from known parameters of the oncoming flow. For a perfect gas, these curves have been constructed and investigated in detail [1]. However, for the solution of problems associated with gas flow at high velocities and high temperatures it is necessary to use models of gases with complicated equations of state. It is therefore of interest to study the properties of oblique shocks in such media. In the present paper, a study is made of the form of the shock polars for two-parameter media with arbitrary equation of state, these satisfying the conditions of Cemplen's theorem. Some properties of oblique shocks in such media that are new compared with a perfect gas are established. On the basis of the obtained results, the existence of triple configurations in steady supersonic flows obtained by the decay of plane shock waves is considered. It is shown that D'yakov-unstable discontinuities decompose into an oblique shock and a centered rarefaction wave, while spontaneously radiating discontinuities decompose into two shocks or into a shock and a rarefaction wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 147–153, November–December, 1982.  相似文献   

6.
In the experimental investigation of liquefaction shock waves, it is possible to measure the soundspeed of the two-phase, liquid-vapor mixture behind the shock wave. The expansion wave, produced as the shock wave emerges from the open end of a shock tube, intersects the shockfront at an observable point, allowing a simple Mach construction for the determination of the mixture soundspeed. Photographic observation and measurements of fluid properties and shock velocity are required. Results are compared with the mixture soundspeeds calculated for local thermodynamic equilibrium. Departures from the equilibrium values increase as shock strength increases.  相似文献   

7.
This paper deals with a molecular gas-dynamics method applied to the accurate determination of the condensation coefficient of methanol vapor. The method consisted of an experiment using a shock tube and computations using a molecular gas-dynamics equation. The experiments were performed in such situations where the shift from a vapor–liquid equilibrium state to a nonequilibrium one is realized by a shock wave in a scale of molecular mean free time of vapor molecules. The temporal evolution in thickness of a liquid film formed on the shock-tube endwall behind a reflected shock wave is measured by an optical interferometer. By comparing the measured liquid-film thickness with numerical solutions for a polyatomic version of the Gaussian–BGK model of the Boltzmann equation, the condensation coefficient of methanol vapor is accurately determined in vapor–liquid nonequilibrium states. As a result, it is clear that the condensation coefficient is just unity very near to an equilibrium state, but is smaller far from the equilibrium state.  相似文献   

8.
The process of reflection of shock waves (SW) from a solid wall in a two-component mixture of condensed materials is studied within the framework of mechanics of heterogeneous media. The velocity of a reflected SW and the values of the parameters behind its front are analytically determined as functions of the velocity of the incident wave and the initial parameters of the mixture. It is shown that the absolute value of the velocity of the reflected SW can be greater than the velocity of the incident SW in mixtures with a small content of the light component and at low velocities of the incident shock wave. The nonmonotonic character of the dependence of pressure in the final equilibrium state behind the incident SW on the initial volume concentration of particles is demonstrated. The velocity of the incident SW is estimated for the case where a similar effect is also observed behind a reflected SW. It is established that, for weak shock waves, the dependence of the amplification factor of the reflected SW on the initial volume concentration of the light component is nonmonotonic and has a local maximum. It is noted that, as the velocity of the incident SW increases, the effect of compacting of the mixture (increase in concentration of the heavy component) behind the reflected SW becomes much less pronounced than in a passing SW. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences. Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 5, pp. 73–78, September–October, 1999.  相似文献   

9.
Calculation of the oblique shock wave of real gases is a difficult and time consuming problem because it involves numerical solution of a set of 10 equations, two of which (i.e., the equation of state and enthalpy function)—if available—are of a very complicated algebraic form. The present work presents a generalized method for calculating oblique shock waves of real gases, based on the Redlich-Kwong equation of state. Also described is an exact method applicable when the exact equation of state and enthalpy function of a real gas are available. Application of the generalized and the exact methods in the case of real air showed that the former is very accurate and at least twenty times faster than the latter. An additional contribution of the study is the derivation of real gas oblique shock wave equations, which are of the same algebraic form as the well known ideal gas normal shock wave relations.  相似文献   

10.
洪启臻  王小永  孙泉华 《力学学报》2019,51(6):1761-1774
高超声速流动在头激波压缩后常处于高 温条件下的热化学非平衡状态. 本文采用态-态方法和双温度模型计算分析了一维正激波后和高超声速钝体绕流驻点线上的氧气热化学非平衡流动. 态-态方法将氧气的每个振动能级当成独立的组分,通过耦合 Euler 方程或驻点线上的降维 Navier-Stokes 方程,数值求解得 到了高温流动中的精细热化学非平衡状态. 而双温度模型假设氧气的振动能级服从 Boltzmann 分布,通过求解振动能方程得到振动温度. 一维正激波后热化学松弛过程的计算结果表明,态-态计算预测的温度分布和氧原子浓度分布较好地吻合了文 献中的实验结果,而经典的双温度模型的预测结果误差较大,且不同双温度模型的计算结果比较发散. 态-态方法详细地给出了所有振动能级的变化过程. 无论是正激波还是脱体激波后的流场,都是高振动能级首先得到激发;但是数密度大的低振动能级先达到热平衡,而高能级 分子要经过很长距离后才能达到热平衡. 在驻点附近,复合反应生成的氧气分子处于高振动能级,导致高振动能级分子数密度显著高于平衡分布. 计算还发现,经典双温度模型的离解反应速率明显偏离态-态计算结果,无法准确体现振动离解耦合效应对离解反应 速率的影响,但是 Park 双温度模型将离解失去的振动能取为 0.3$\sim 高超声速流动在头激波压缩后常处于高 温条件下的热化学非平衡状态. 本文采用态-态方法和双温度模型计算分析了一维正激波后和高超声速钝体绕流驻点线上的氧气热化学非平衡流动. 态-态方法将氧气的每个振动能级当成独立的组分,通过耦合 Euler 方程或驻点线上的降维 Navier-Stokes 方程,数值求解得 到了高温流动中的精细热化学非平衡状态. 而双温度模型假设氧气的振动能级服从 Boltzmann 分布,通过求解振动能方程得到振动温度. 一维正激波后热化学松弛过程的计算结果表明,态-态计算预测的温度分布和氧原子浓度分布较好地吻合了文 献中的实验结果,而经典的双温度模型的预测结果误差较大,且不同双温度模型的计算结果比较发散. 态-态方法详细地给出了所有振动能级的变化过程. 无论是正激波还是脱体激波后的流场,都是高振动能级首先得到激发;但是数密度大的低振动能级先达到热平衡,而高能级 分子要经过很长距离后才能达到热平衡. 在驻点附近,复合反应生成的氧气分子处于高振动能级,导致高振动能级分子数密度显著高于平衡分布. 计算还发现,经典双温度模型的离解反应速率明显偏离态-态计算结果,无法准确体现振动离解耦合效应对离解反应 速率的影响,但是 Park 双温度模型将离解失去的振动能取为 0.3$\sim $0.5 倍分子离解能是比较合理的.  相似文献   

11.
In this paper, transverse vibration of an axially moving beam supported by a viscoelastic foundation is analyzed by a complex modal analysis method. The equation of motion is developed based on the generalized Hamilton's principle. Eigenvalues and eigenfunctions are semi-analytically obtained. The governing equation is represented in a canonical state space form, which is defined by two matrix differential operators. The orthogonality of the eigenfunctions and the adjoint eigenfunctions is used to decouple the system in the state space. The responses of the system to arbitrary external excitation and initial conditions are expressed in the modal expansion. Numerical examples are presented to illustrate the proposed approach. The effects of the foundation parameters on free and forced vibration are examined.  相似文献   

12.
提出一种保持热力学一致性的扩散界面模型,用来数值模拟固体炸药爆轰与惰性介质的相互作用问题。基于混合网格内各组分物质间可以达到力学平衡状态而不能达到热学平衡状态的假设,由混合网格能量守恒以及压力相等条件,推导出每种组分物质的体积分数演化方程。由此获得的扩散界面模型包括组分物质的质量守恒方程、混合物质的动量及总能量守恒方程,同时包括组分物质的体积分数演化方程和混合物质的压力演化方程。该扩散界面模型的主要特点是考虑了化学反应以及热学非平衡的影响。提出的扩散界面模型在物质界面附近不会出现物理量的非物理振荡现象、适用于任意表达形式的物质状态方程以及任意数目的惰性介质。  相似文献   

13.
A transformation is constructed of the independent variables and the unknown functions for the momentum and continuity equations of which one-dimensional unsteady motions of a perfect gas, relative to which the governing system of equations is invariant.When this transformation is used, the governing equation of state of the gas is transformed into a new equation which contains arbitrary parameters. This may enable approximation of the complex equation of state of a given medium to be carried out by selection of the parameters (in particular, for gases with respect of the equilibrium reactions taking place therein), and the use of this transformation may make it possible to reduce the problem to one with a simpler equation of state, for which the corresponding problem is more easily solved.The transformations investigated do not have singularities and do not impose any significant limitations on the hydrodynamic quantitiesthey are applicable both for variable entropy and for flows with shock waves.  相似文献   

14.
We develop a mathematical model for hysteretic two-phase flow (of oil and water) in waterwet porous media. To account for relative permeability hysteresis, an irreversible trapping-coalescence process is described. According to this process, oil ganglia are created (during imbibition) and released (during drainage) at different rates, leading to history-dependent saturations of trapped and connected oil. As a result, the relative permeability to oil, modelled as a unique function of the connected oil saturation, is subject to saturation history. A saturation history is reflected by history parameters, that is by both the saturation state (of connected and trapped oil) at the most recent flow reversal and the most recent water saturation at which the flow was a primary drainage. Disregarding capillary diffusion, the flow is described by a hyperbolic equation with the connected oil saturation as unknown. This equation contains functional relationships which depend on the flow mode (drainage or imbibition) and the history parameters. The solution consists of continuous waves (expansion waves and constant states), shock waves (possibly connecting different modes) and stationary discontinuities (connecting different saturation histories). The entropy condition for travelling waves is generalized to include admissible shock waves which coincide with flow reversals. It turns out that saturation history generally has a strong influence on both the type and the speed of the waves from which the solution is constructed.  相似文献   

15.
We consider a mixture that consists of a highly elastic material and a liquid dissolved in this material. Using the laws of classical thermodynamics, we state a variational principle describing the mixture equilibrium under static loading conditions. From this principle, we derive equilibrium equations and a system of constitutive relations characterizing the mixture elastic and thermodynamic properties. We state problems describing the stress-strain state of a swollen material and a statically loaded material in thermodynamic equilibrium with the liquid. We consider the case of incompressible mixture. The general theory is illustrated by examples concerned with the deformation behavior of inhomogeneously swollen cross-linked polymers and with their thermodynamics of strains and swelling in solvent media.  相似文献   

16.
The structure of a normal shock wave for a binary mixture of hard-sphere gases is analyzed numerically on the basis of the Boltzmann equation by a finite-difference method. In the analysis, the complicated collision integrals are computed efficiently as well as accurately by means of the numerical kernel method, which is the generalization to the case of a binary mixture of the method devised by Ohwada in 1993 in the shock-structure analysis for a single-component gas. The transition from the upstream to the downstream uniform state is clarified not only for the macroscopic quantities but also for the velocity distribution functions.  相似文献   

17.
The explicit expressions for the change in the amplitudes of one-dimensional acceleration and shock waves propagating through arbitrary homogeneous materials described by the strain and internal state variables/parameters/are derived. The existence of a critical amplitude β for the acceleration wave and a critical strain gradient λ for the shock wave is established. For an infinitesimal shock wave the general form of the solution of the governing differential equation is furnished. The differential equations for the amplitudes of these two kind of waves are applied to an elastic-viscoplastic material.  相似文献   

18.
建立了饱和多孔介质大变形分析的一种有限元-有限体积混合计算方法.将饱和多孔介质视为由固体骨架和孔隙水组成的两相体,其基本方程包括动力平衡方程和渗流连续方程.基于u-p假定和更新的Lagrange方法,饱和多孔介质的动力平衡方程在空间域内采用有限元方法进行离散,而渗流连续方程在空阃域内则采用有限体积法进行离散.通过两个数值算例,一维有限弹性固结和动力荷载作用下堤坝动力响应的计算,验证了该方法的有效性.  相似文献   

19.
基于之前提出的一种含熵变项的特征线法,通过控制非等熵流中的能量释放来刻画铝粉燃烧的影响,结合简单Chapman-Jouguet模型和JWL-Miller状态方程,计算了柱形含铝炸药水下爆炸的近场参数。对比模拟结果与实验数据,发现这种特征线法可以较好地预测近场冲击波的传播迹线、爆轰产物的膨胀轨迹以及内部压缩波的反射过程。结果表明,这种特征线法可用于含铝炸药水下爆炸的近场计算,进一步可用于评估含铝炸药性能或计算水下能量输出。  相似文献   

20.
An algorithm is devised for calculating by the finite difference method the supersonic flow region for three-dimensional steady-state flow of a viscous gas past a blunted body with many contour discontinuities. The state of this gas at high hypersonic flight speeds can be characterized by equilibrium or frozen physicochemical processes. Generally speaking, any arbitrary number and sequence of either compression or expansion discontinuities is permitted. The computational scheme adopted provides identification of the vortex layers, regions with different equations of state, and so on. We use a flow model that is either frozen throughout the entire shock layer or only in the portion of the layer adjacent to the body surface. The pressure at certain points on the surface of spherically blunted cones with half-angles θ?10° may differ by a factor of 2 or more in equilibrium and frozen flows. Example calculations are presented, and the results are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号