首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vivo fluorescence spectroscopy of nonmelanoma skin cancer   总被引:3,自引:0,他引:3  
In vivo and ex vivo tissue autofluorescence (endogenous fluorescence) have been employed to investigate the presence of markers that could be used to detect tissue abnormalities and/or malignancies. We present a study of the autofluorescence of normal skin and tumor in vivo, conducted on 18 patients diagnosed with nonmelanoma skin cancers (NMSC). We observed that both in basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) the endogenous fluorescence due to tryptophan residues was more intense in tumor than in normal tissue, probably due to epidermal thickening and/or hyperproliferation. Conversely, the fluorescence intensity associated with dermal collagen crosslinks was generally lower in tumors than in the surrounding normal tissue, probably because of degradation or erosion of the connective tissue due to enzymes released by the tumor. The decrease of collagen fluorescence in the connective tissue adjacent to the tumor loci was validated by fluorescence imaging on fresh-frozen tissue sections obtained from 33 NMSC excised specimens. Our results suggest that endogenous fluorescence of NMSC, excited in the UV region of the spectrum, has characteristic features that are different from normal tissue and may be exploited for noninvasive diagnostics and for the detection of tumor margins.  相似文献   

2.
Steady-state fluorescence imaging can be used in conjunction with selective exogenous or endogenous fluorescent compounds for the diagnosis of skin lesions, for example cancer. Depending on the excitation and emission properties of the fluorescent compound used, various excitation and/or emission wavelengths can be chosen in order to allow fluorescence imaging. Unwanted background signals such as autofluorescence and scattering can decrease the image quality and, hence, the diagnosis potential of this imaging method. We have used an inexpensive dual excitation and/or emission wavelength approach in order to suppress the unwanted background signal and allow contrast enhanced fluorescence imaging. One excitation and/or emission wavelength is at the corresponding maximum of the fluorescent compound, while the second is at a nearby excitation/emission minimum. The first image contains the emission from the fluorescent compound used combined with the signal from the unwanted background. The second image provides an image of just the unwanted background signal. The difference of both images taken, thus gives a contrast enhanced image of the skin lesion. The method relies on the assumption that the background signal does not change significantly due to the small changes in wavelength for excitation or emission. Image ratio methods have already been applied towards diagnosis of basal cell carcinomas after administration of aminolevulinic acid-induced protoporphyin IX. In this study, we describe in vivo measurements in mice where the second image, usually the background signal only, contains new unwanted image data. This simple method can successfully resolve the desired image, thus demonstrating the versatility of the image processing procedure.  相似文献   

3.
The use of steady state fluorescence spectroscopy in the detection and monitoring of potential photochemotherapeutic agents is examined. Problems associated with both in vitro and in vivo fluorescence measurements are investigated, and typical data are presented. Recent results on the use of fluorescence in pharmacokinetic studies are discussed, and the relative merits of in vitro vs. in vivo methods are outlined.  相似文献   

4.
5.
Tryptophan, when in a protein, typically shows multiexponential fluorescence decay kinetics. Complex kinetics prevents a straightforward interpretation of time-resolved fluorescence protein data, particularly in anisotropy studies or if the effect of a dynamic quencher or a resonance energy transfer (RET) acceptor is investigated. Here, time-resolved fluorescence data are presented of an isosteric tryptophan analogue, 5-fluorotryptophan, which when biosynthetically incorporated in proteins shows monoexponential decay kinetics. Data are presented indicating that the presence of a fluoro atom at the 5-position suppresses the electron transfer rate from the excited indole moiety to the peptide bond. This process has been related to the multiexponential fluorescence decay of tryptophan in proteins. The monoexponential decay of 5-fluorotryptophan makes it possible to measure simultaneously multiple distances between 5-fluorotryptophan and a RET acceptor. We demonstrate that for an oligomeric protein, consisting of two single-tryptophan-containing subunits, the individual distances between 5-fluorotryptophan and the single substrate binding site can be resolved using a substrate harboring a RET acceptor.  相似文献   

6.
Cancer imaging requires selective high accumulation of contrast agents in the tumor region and correspondingly low uptake in healthy tissues. Here, by making use of a novel synthetic polymer to solubilize single-walled carbon nanotubes (SWNTs), we prepared a well-functionalized SWNT formulation with long blood circulation (half-life of ~30 h) in vivo to achieve ultrahigh accumulation of ~30% injected dose (ID)/g in 4T1 murine breast tumors in Balb/c mice. Functionalization dependent blood circulation and tumor uptake were investigated through comparisons with phospholipid-PEG solubilized SWNTs. For the first time, we performed video-rate imaging of tumors based on the intrinsic fluorescence of SWNTs in the second near-infrared (NIR-II, 1.1-1.4 μm) window. We carried out dynamic contrast imaging through principal component analysis (PCA) to immediately pinpoint the tumor within ~20 s after injection. Imaging over time revealed increasing tumor contrast up to 72 h after injection, allowing for its unambiguous identification. The 3D reconstruction of the SWNTs distribution based on their stable photoluminescence inside the tumor revealed a high degree of colocalization of SWNTs and blood vessels, suggesting enhanced permeability and retention (EPR) effect as the main cause of high passive tumor uptake of the nanotubes.  相似文献   

7.
Using fluorescence imaging, the tissue-localizing properties of five photosensitizers were studied in vivo in tumours in 'sandwich' observation chambers and in tumours growing on thigh muscle. The preliminary results indicate that of the three photodynamically active dyes tested (haematoporphyrin derivative, Photofrin II and aluminium phthalocyanine tetrasulphonate), the phthalocyanine possesses the best tumour-localizing properties. This makes it possible to combine tumour fluorescence detection and photodynamic therapy with reduced skin photosensitivity. The two photodynamically inactive dyes tested (uroporphyrin I and acridine red) may be useful for application in fluorescence imaging to localize superficial tumours without inducing skin photosensitivity. In particular, acridine red has remarkable tumour-localizing properties, but is rather toxic.  相似文献   

8.
A Thiazole Orange conjugated with folate derivative was synthesized in two steps. Firstly, folate was coupled with 1-(3-aminopropyl)-4-methylquinolinium bromide to afford folate-methylquinolinium bromide, which then reacted with benzothiazolium to obtain the title folate-conjugated compound. The compound was evaluated by 1H-NMR MS, TG/DTA and fluorescence spectroscopic methods. The title compound could selectively target folate receptor expressing tumors according to the in vivo fluorescence imaging preliminarily performed on nude mice with breast tumors.  相似文献   

9.
Based on the findings that the azo functional group has excellent properties as the hypoxia-sensor moiety, we developed hypoxia-sensitive near-infrared fluorescent probes in which a large fluorescence increase is triggered by the cleavage of an azo bond. The probes were used for fluorescence imaging of hypoxic cells and real-time monitoring of ischemia in the liver and kidney of live mice.  相似文献   

10.
Quantum dots (QDs), also named semiconductor nanocrystals, have initiated a new realm of bioscience by combining nanomaterials with biology, which will profoundly influence future biological and biomedical research. In this review, we describe the extraordinary optical properties of QDs and developments in methods for their synthesis. We focus on fluorescent imaging with QDs both in vitro and in vivo, and the cytotoxicity of QDs and potential barriers to their use in practical biomedical applications. Finally, we provide insights into improvements aimed at decreasing the cytotoxicity of QDs and the future outlook of QD applications in biomedical fields.
Figure
The unique tunable optical and chemical properties of QDs have been exploited in a growing array of biomedical applications including clinical diagnostics and molecular, cellular, and tumor imaging  相似文献   

11.
Near-infrared gold-doped CdHgTe quantum dots (QDs) with improved photoluminescence and biocompatibility were developed using an aqueous solution route with l-glutathione and l-cysteine as stabilizers. As-prepared Au:CdHgTe QDs were covalently linked to arginine–glycine–aspartic acid (RGD) peptide, anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb), and anti- carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) MAb separately. Three Au:CdHgTe QD bioconjugates (QD800-RGD, QD820-anti-CEACAM1, and QD840-anti-EGFR) were successfully used as probes for in vivo tumor-targeted multispectral fluorescence imaging of xenografts. Fluorescence signals from the QD bioconjugates used to detect three tumor markers were spectrally unmixed, and their co-localization was analyzed. The results indicate that multiple tumor markers could be simultaneously detected by multispectral fluorescence imaging in vivo using QD bioconjugates as probes. This approach has excellent potential as an imaging method for the noninvasive exploration and detection of multiple tumor markers in vivo, thereby substantially aiding the diagnosis of cancer.  相似文献   

12.
Near-infrared fluorescent silica-porphyrin hybrid nanotubes (HNTs) were successfully synthesized by π-π stacking, electrostatic interaction and a sol-gel reaction. The HNTs-labeled macrophages were detected in vivo, and the minimum detectable number of cells was 200. Furthermore, the biodistribution of HNTs-labeled macrophages was tracked by fluorescence imaging.  相似文献   

13.
Pantetheinase is an amidohydrolase that cleaves pantetheine into pantothenic acid and cysteamine. Functional studies have found that ubiquitous expression of this enzyme is associated with many inflammatory diseases. However, the lack of near-infrared fluorescence probes limits the better understanding of the functions of the enzyme. In this work, we have developed a new near-infrared fluorescence probe, CYLP, for bioimaging of pantetheinase by using pantothenic acid with a self-immolative linker as a recognition group. The probe produces a sensitive fluorescence off–on response at 710 nm to pantetheinase with a detection limit of 0.02 ng mL−1 and can be used to image the intraperitoneal pantetheinase activity in mice in vivo. Moreover, with the probe we have observed that pantetheinase is significantly increased in the tissues of mouse inflammatory models as well as in the intestines of mice with inflammatory bowel disease. Therefore, CYLP may provide a convenient and intuitive tool for studying the role of pantetheinase in diseases.

A near-infrared fluorescence probe for detecting pantetheinase activity has been used for imaging pantetheinase in mice with inflammatory bowel disease.  相似文献   

14.
Urinary cytology is a noninvasive and unconstraining technique for urothelial cancer diagnosis but lacks sensitivity for detecting low-grade lesions. In this study, the fluorescence properties of classical Papanicolaou-stained urothelial cytological slides from patients or from cell lines were monitored to investigate metabolic changes in normal and tumoral cells. Time- and spectrally-resolved fluorescence imaging was performed at the single cell level to assess the spectral and temporal properties as well as the spatial distribution of the fluorescence emitted by urothelial cells. The results reveal quite different fluorescence distributions between tumoral urothelial cells, characterized by a perimembrane fluorescence localization, and the normal cells which exhibit an intracellular fluorescence. This is not caused by differences in the fluorescence emission of the endogenous fluorophores NAD(P)H, flavoproteins or porphyrins but by various localization of the EA 50 Papanicolaou stain as revealed by both the spectral and time-resolved parameters. The present results demonstrate that the use of single-cell endofluorescence emission of Papanicolaou-stained urothelial cytological slides can allow an early ex vivo diagnosis of low-grade bladder cancers.  相似文献   

15.
The purpose of this study was to investigate in vivo biodistribution and potential target tissues of pancreatic-derived factor (PANDER, FAM3B) using 18F-labeled PANDER positron emission tomography (PET) imaging. 18F-Labeled PANDER ([18F]FB-PANDER) was prepared by reaction of PANDER and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). The uncorrected radiochemical yield of [18F]FB-PANDER was 15.2 ± 3.4 % (n = 4) based on [18F]SFB within the total synthesis time of 30 min. In vivo biodistribution of [18F]FB-PANDER in nomal mice and PET imaging demonstrated high uptake of the radiotracer in urinary bladder, kidneys and gall bladder, and fast clearance from kidneys and gall bladder. Also, moderate uptake in blood, liver, pancreas, small intestine and bone, low uptake in brain and muscle, and almost no uptake in S180 fibrosarcoma tissue were observed. The results indicated that the major excretion route of PANDER was through renal-urinary bladder and biliary system, and no obvious binding targets of PANDER in the main organs and S180 fibrosarcoma tissue were found.  相似文献   

16.
Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibility and are richer in variety. However, traditional organic fluorophores tend to quench fluorescence upon aggregation, which is known as aggregation-caused quenching (ACQ) effect that hinders the fabrication of highly emissive fluorescent nanoparticles. In this work, we demonstrate the synthesis of organic fluorescent dots with aggregation-induced emission (AIE) in far-red/near-infrared (FA/NIR) region. A conventional ACQ-characteristic fluorescent dye, 3,4:9,10-tetracarboxylic perylene bisimide (PBI), is converted into an AIE fluorogen through attaching two tetraphenylethylene (TPE) moieties. The fluorescent dots with surface folic acid groups are fabricated from PBI derivative (DTPEPBI), showing specific targeting effect to folate receptor-overexpressed cancer cells. In vivo studies also suggest that the folic acid-functionalized AIE dots preferentially accumulate in the tumor site through enhanced permeability and retention (EPR) effect and folate receptor-mediated active targeting effect. The low cyto-toxicity, good FR/NIR contrast and excellent targeting ability in in vitro/in vivo imaging indicate that the AIE dots have great potentials in advanced bioimaging applications.  相似文献   

17.
Measurement of gastrointestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia-induced dysfunctions. However, current pH measurement techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). This study aimed to set up and validate a fluorescence imaging technique to measure in vivo the intramucosal pH (pHim) of the intestine. The intestine was inserted into an optical chamber placed under a microscope. Animals were injected intravenously with the pH-sensitive fluorescent dye BCECF. Fluorescence was visualized by illuminating the intestine alternately at 490 and 470 nm. The emitted fluorescence was directed to an intensified camera. The ratio of emitted fluorescence at excitation wavelengths of 490 and 470 nm was measured, corrected and converted to pHim by constructing a calibration curve. The pHim controls were performed with a pH microelectrode and were correlated with venous blood gas sampling. Results show that pHim is determined with an accuracy of +/- 0.07 pH units and a response time of 1 min. In conclusion pHim mapping of rat intestine can be obtained by fluorescence imaging using BCECF. This technology could be easily adapted for endoscopic pH measurements.  相似文献   

18.
A strategy is presented that involes coupling Na(2)SeO(3) reduction with the binding of silver ions and alanine in a quasi-biosystem to obtain ultrasmall, near-infrared Ag(2)Se quantum dots (QDs) with tunable fluorescence at 90 °C in aqueous solution. This strategy avoids high temperatures, high pressures, and organic solvents so that water-dispersible sub-3 nm Ag(2)Se QDs can be directly obtained. The photoluminescence of the Ag(2)Se QDs was size-dependent over a wavelength range from 700 to 820 nm, corresponding to sizes from 1.5 ± 0.4 to 2.4 ± 0.5 nm, with good monodispersity. The Ag(2)Se QDs are less cytotoxic than other nanomaterials used for similar applications. Furthermore, the NIR fluorescence of the Ag(2)Se QDs could penetrate through the abdominal cavity of a living nude mouse and could be detected on its back side, demonstrating the potential applications of these less toxic NIR Ag(2)Se QDs in bioimaging.  相似文献   

19.
The novel and burgeoning technique of surfaced-enhanced cellular fluorescence imaging has tremendous potential in the monitoring and investigation of intracellular processes at the single-molecular level, for instance, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics. The success hinges on the development and fabrication of plasmonic nanostructured surfaces with size and shape compatible with cell interactions because they are crucial to enhanced cellular imaging. In this review, the mechanism of surface-enhanced cellular fluorescence imaging is discussed in view of metal-enhanced fluorescence. The design of nanostructured surfaces with evenly distributed plasmonic fields suitable for enhanced cellular fluorescence imaging such as nanoparticle superlattice coatings, lithographically-based substrates, and alumina-templated surface are described.  相似文献   

20.
《Chemistry & biology》1997,4(11):809-816
Background: We previously reported the isolation of aptamer irreversible inhibitors of human neutrophil elastase. We now report on the application of aptamer technology to the field of diagnostic imaging.Results: The enzyme elastase has been reported to bind to the surface of activated neutrophils. Using a fluorescent flow cytometry assay, we showed that an aptamer inhibitor of elastase also binds preferentially to activated neutrophils. We then tested the ability of the aptamer to image inflammation in vivo in a rat reverse passive Arthus reaction model. The aptamer achieved a peak target-to-background (T/B) ratio of 4.3 ± 0.6 in 2 hours. IgG, which is used clinically to image inflammation, took a longer time to achieve a lower T/B: 3.1 ± 0.1 at 3 hours. The difference in T/B values is due to the faster clearance of the aptamer signal from the blood pool.Conclusions: It is feasible to apply aptamer ligands for use in diagnostic imaging, where they may offer significant advantages over monoclonal antibodies and other reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号