首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2-氯-10-氯烷酰基吩噻嗪或2-氯-10-(α-甲基丙烯酰基)吩噻嗪与氮七环、氮八环地应,生成相应的2-氯-10-氨烷酰基吩噻嗪(Ⅳ)。2-氯吩噻嗪与1-(β-氯乙基)氮八环在氨基钠存在下缩合,得2-氯-10-[β-(N-氮八环)乙基]吩噻嗪(Ⅴa);β-(10-吩噻嗪基)丙酸(Ⅵa)或β[10-(2-氯吩噻嗪基)]丙酸甲酯(Ⅵc)与氢化铝锂、氮八环或氮七环行氨解-还原反应,生成10-[γ-(N-氮八环)丙基]吩噻嗪(Ⅴb)及2-氯-10-[γ-(N-氮七环)丙基]吩噻嗪(Ⅴc)。当β-[10-(2-氯吩噻嗪基)]丙酸用五氯化磷处理时,分到10-氯-2,3-二氢3-酮-1H-吡啶并[3,2,1-kl]吩噻嗪(Ⅶa);后者与聚甲醛、氮七环盐酸盐反应,生成10-氯-2-(N-氮七环甲基)-2,3-二氢-3-酮-1H-吡啶并[3,2,1-kl]吩噻嗪(Ⅶd)盐酸盐。1-(β-氯丙酰基)氮七环(Ⅹ)用氢化铝锂还原时,得到1-正丙基氮七环(Ⅺ)。  相似文献   

2.
新型3-氯-1-(3-氯-2-吡啶)-1H-吡唑甲酰胺类化合物的合成   总被引:1,自引:0,他引:1  
2,3-二氯吡啶肼解后与马来酸二乙酯成环,再经氯代、氧化、水解制得3-氯-1-(3-氯-2-吡啶)-1H-吡唑-5-甲酸(6);6经二氯亚砜酰氯化、环胺酰胺化合成了13个新型3-氯-1-(3-氯-2-吡啶)-1H-吡唑甲酰胺类化合物,其结构经1HNMR和MS表征。  相似文献   

3.
以N-吡啶基吡唑甲酸和2-氨基-3-甲基苯甲酸为起始原料,经由亲核加成、环化和酰化等多步反应合成了一系列结构新颖的N-(2-(5-(3-溴-1-(3-氯吡啶-2-基)-1H-吡唑-5-基)-1,3,4-噁二唑-2-基)-4-氯-6-甲基苯基)酰胺类化合物.测试了所合成化合物的杀虫及抑菌活性,结果表明,新化合物大多化合物在200 mg·L^-1浓度下对东方粘虫(Mythimna separataWalker)具有一定的杀虫活性,尤其是N-(2-(5-(3-溴-1-(3-氯吡啶-2-基)-1H-吡唑-5-基)-1,3,4-噁二唑-2-基)-4-氯-6-甲基苯基)乙酰胺(8a)和N-(2-(5-(3-溴-1-(3-氯吡啶-2-基)-1H-吡唑-5-基)-1,3,4-噁二唑-2-基)-4-氯-6-甲基苯基)-3-氯-2,2-二甲基丙酰胺(8e)致死率可达70%;部分化合物在50 mg·L^-1浓度下对油菜菌核病菌的抑菌活性相对较好(54.5%~63.6%),优于triadimefon和chlorantraniliprole;部分化合物如N-(2-(5-(3-溴-1-(3-氯吡啶-2-基)-1H-吡唑-5-基)-1,3,4-噁二唑-2-基)-4-氯-6-甲基苯基)-3,3-二甲基丁酰胺80和N-(2-(5-(3-溴-1-(3-氯吡啶-2-基)-1H-吡唑-5-基)-1,3,4-噁二唑-2-基)-4-氯-6-甲基苯基)-4-氟苯甲酰胺(8h)对苹果轮纹病菌具有中等抑菌活性.值得注意的是,化合物8e的杀粘虫活性和对油菜菌核病菌的抑菌活性都较为突出,可用作新农药创制研究的新型参考结构.  相似文献   

4.
哒嗪酮的乙酰胺类化合物的合成及生物活性   总被引:2,自引:0,他引:2  
2-叔丁基-4-氯-5-羟基-哒嗪-3(2H)-酮(3)与相应的N-烷基或N,N-二烷基氯乙酰胺(4a-4l)反应,合成了2-叔丁基-5-[(N-烷基或N,N-二烷基乙酰胺)氧基]-4-氯-哒嗪-3(2H)-酮(1a-1l),生物活性测定结果表明部分化合物(1a-1l)具有杀虫活性。  相似文献   

5.
盐酸奈法唑酮的合成   总被引:1,自引:0,他引:1  
盐酸奈法唑酮是一类新型抗抑郁药.先用间氯苯胺与二乙醇胺环化合成1-(3-氯苯基)哌嗪,再与1-溴-3-氯丙烷反应制得1-(3-氯丙基)-4-(3-氯苯基)哌嗪盐酸盐,最后与5-乙基-4-(2-苯氧乙基)-1,2,4-三唑-3-酮反应得到盐酸奈法唑酮.产物结构经IR,MS,1H NMR及13C NMR确证.  相似文献   

6.
1.本文报告自对-双(2-氯乙基)氨基苯甲酸(Ⅳ)或双(2-氯乙基)氨基苯(Ⅷ)开始,分别经八步或七步反应合成1-[对-双(2-氯乙基)氦基苯基]1-2-二氯乙酰胺基-1,3-丙二醇(Ⅲa)以及1-[对-双(2-氯乙基)氨基苯基]-2-乙酰胺基-1,3-丙二醇(Ⅲb)。 2.化合物Ⅲa及其中圈体X对某些动物肿瘤具显著的抑制作用。  相似文献   

7.
含肟醚的新型四唑啉酮衍生物的合成及除草活性研究   总被引:1,自引:0,他引:1  
骆焱平  龚青  陈琼  杨光富 《有机化学》2008,28(9):1561-1565
1-(4-氯苯基)-1,4-二氢-四唑-5-酮(1)与氯丙酮反应生成1-(4-氯苯基)-4-(2-氧代丙基)-1,4-二氢-四唑-5-酮(2). 中间体2、盐酸羟胺和卤化物通过三组分一锅法合成了目标化合物3. 初步生物活性测试结果表明: 目标化合物3具有较好的除草活性.  相似文献   

8.
1-芳基-4-吡唑-5-酰基氨基脲类化合物的合成及杀菌活性   总被引:1,自引:0,他引:1  
为了寻求新的吡唑先导化合物, 用4-氯-1-甲基-3-乙基-5-吡唑甲酰肼与取代苯基异氰酸酯反应得到了14个新的1-吡唑酰基-4-芳基氨基脲类化合物. 经IR, 1H NMR, MS和元素分析对化合物的结构进行了表征. 初步生物活性实验结果表明, 在500 mg/mL浓度下, 化合物1-(4-氯-3-乙基-1-甲基-1H-吡唑-5-甲酰基)-4-(2-甲基苯基)氨基脲(4g), 1-(4-氯-3-乙基-1-甲基-1H-吡唑-5-甲酰基)-4-(2,4-二甲基苯基)氨基脲(4k)对小麦白粉病菌(Blumeria graminis)的抑制率分别达到90%和80%; 在25 mg/mL浓度下, 化合物1-(4-氯-3-乙基-1-甲基-1H-吡唑-5-甲酰基)-4-苯基氨基脲(4c)对黄瓜灰霉病菌(Botrytis cinerea)的抑制率达到70.1%; 化合物1-(4-氯-3-乙基-1-甲基-1H-吡唑-5-甲酰基)-4-苯基氨基脲(4c)和1-(4-氯-3-乙基-1-甲基-1H-吡唑-5-甲酰基)-4-(2-硝基苯基)氨基脲(4d)对稻瘟病菌(Pyricularia oryzae)的抑制率均达到51.3%.  相似文献   

9.
1-(2-氯-4-吡啶基)-3-苯基脲的合成   总被引:1,自引:0,他引:1  
氯氨基吡啶;氯吡啶基苯基脲;1-(2-氯-4-吡啶基)-3-苯基脲的合成  相似文献   

10.
4-氯-2, 6-二羟基苯甲醚(2)与氯乙酸钠缩合, 制得4-氯-2, 6-二(羟甲氧基甲基)苯甲醚(4), 由4经酰氯化生成4-氯-2, 6-二(3-氯甲酰基-2-氧杂丙基)苯甲醚(5)后, 再与相应的二氮杂冠醚3a, 3b和3c反应制备标题化合物1a~1c。用1^H NMR法研究了1a~1c对碱金属离子的配位性能, 讨论了分子内的中心功能基和底环大小对其IR, 1^H NMR和配位行为的影响。  相似文献   

11.
An efficient and novel method for synthesizing 3′,5′-dithio-2′-deoxyguanosine was described. In this method normal guanosine was used as the strating materials. A very efficient procedure was used to synthesize 2´-O-tosylguanosine 1, which used 0.1eq DBTO instead of 2eq. 1 was treated with LTBH to give 9-(2-deoxy-β-D-threo-pentofuranosyl)guanine 2. 2 could be easily truned to the target compound.  相似文献   

12.
1-β-D-Ribofuranosyl- 21 , 1-(2-deoxy-β-D-erytftro-pento fur anosyl)- 27 and 1-β-D-arabinofuranosyl- 29 derivatives of 1,2,4-triazole-3-sulfonamide ( 19 ) have been prepared. Glycosylation of the silylated 19 with 1,2,3,5-tetra-0-acetyl-β-D-ribofuranose ( 5 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleoside ( 20 ), which on ammonolysis afforded 1-β-D-ribofuranosyl-1,2,4-triazole-3-sulfonamide ( 21 ). Stereospecific glycosylation of the sodium salt of 19 with either 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 22 ) or 1-chloro-2,3,5-tri-0-benzyl-α-D-arabinofuranose ( 23 ) provided the corresponding protected nucleosides 26 and 28. Deprotection of 26 and 28 furnished 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,4-triazole-3-sulfonamide ( 27 ) and 1-β-D-arabinofuranosyl-1,2,4-triazole-3-sulfonamide ( 29 ), respectively. 2-0-D-Ribofuranosyl-1,2,4-triazole-3(4H)-thione ( 7 ) and 4-β-D-ribofuranosyl-1,2,4-triazole-3(2H)-thione ( 9 ) were also prepared utilizing either an acid catalyzed fusion of 1,2,4-triazole-3(1H,2H)-thione ( 4 ) with 5 , the reaction of 5 with silylated 4 in the presence of trimethylsilyl triflate, or by ring closure of 4-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)thiosemicarbazide ( 10 ) with mixed anhydride and subsequent deacylation. The synthesis of 1-β-D-ribofuranosyl-3-benzylthio-1,2,4-triazole ( 15 ) has also been accomplished by the silylation procedure employing 3-benzylthio-1,2,4-triazole ( 13 ) and 5 to give 1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)-3-benzylthio-1,2,4-triazole ( 14 ). Deacetylation of 14 furnished 15 . The structural assignments of 7, 14 and 21 were made by single-crystal X-ray diffraction analysis and their hydrogen bonding characteristics have been studied. The sulfonamido-1,2,4-triazole nucleosides are devoid of any significant antiviral or antitumor activity in cell culture.  相似文献   

13.
Glycosylation of 6-(substituted-imidazol-1-yl)purine sodium salts with 2-deoxy-3,5-di-O-(p-toluoyl)-alpha-D-erythro-pentofuranosyl chloride proceeds with regiospecific formation of the N9 isomers. Base substrates with lipophilic substituents on the C6-linked imidazole moiety are more soluble in organic solvents, and the solubility is further increased with binary solvent mixtures. Selective solvation also diminishes the extent of anomerization of the chlorosugar. Stirred reaction mixtures of the modified-purine sodium salts generated in a polar solvent and cooled solutions of the protected 2-deoxysugar chloride in a nonpolar solvent give 2'-deoxynucleoside derivatives with N9 regiochemistry and enhanced beta/alpha configuration ratios. Application of the binary-solvent methodology with 2-chloro-6-(substituted-imidazol-1-yl)purine salts in cold acetonitrile and the chlorosugar in cold dichloromethane gives essentially quantitative yields of the N9 isomers of beta-anomeric 2'-deoxynucleoside intermediates. Direct ammonolysis (NH(3)/MeOH) of such intermediates or benzylation of the imidazole ring followed by milder ammonolysis of the imidazolium salt gives high yields of the clinical anticancer drug cladribine (2-chloro-2'-deoxyadenosine).  相似文献   

14.
A simple synthesis of tubercidin ( 1 ), 7-deazaguanosine ( 2 ) and 2′-deoxy-7-deazaguanosine ( 14 ) has been accomplished using the sodium salt glycosylation procedure. Reaction of the sodium salt of 4-chloro- and 2-amino-4-chloro-pyrrolo[2,3-d]pyrimidine, 3 and 4 , respectively, with 1-chloro-2,3-0-isopropylidene-5-0-(t-butyl)dimethylsilyl-α-D-ribofuranose ( 5 ) gave the corresponding protected nucleosides 6n and 7 with β-anomeric configuration. Deprotection of 6 provided 8 , which on heating with methanolic ammonia gave tubercidin ( 1 ) in excellent yield. Functional group transformation of 7 , followed by deisopropylidenation gave 2-aminotubercidin ( 10 ) and 2-amino-7-β-D-ribofuranosylpyrrolo[2,3-d]pyrimidine-4(3H)-thione ( 11 ). Treatment of 7 with 1N sodium methoxide followed by exposure to aqueous trifluoroacetic acid, and ether cleavage furnished 7-deazaguanosine ( 2 ). 2′-Deoxy-7-deazaguanosine ( 14 ) and 2′-deoxy-7-deaza-6-thioguano-sine ( 18 ) were also prepared by using similar sequence of reactions employing 4 and 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 15 ).  相似文献   

15.
A simple and high-yield synthesis of biologically significant 2′-deoxy-6-thioguanosine ( 11 ), ara-6-thioguanine ( 16 ) and araG ( 17 ) has been accomplished employing the Stereospecific sodium salt glycosylation method. Glycosylation of the sodium salt of 6-chloro- and 2-amino-6-chloropurine ( 1 and 2 , respectively) with 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D-erythro-pentofuranose ( 3 ) gave the corresponding N-9 substituted nucleosides as major products with the β-anomeric configuration ( 4 and 5 , respectively) along with a minor amount of the N-7 positional isomers ( 6 and 7 ). Treatment of 4 with hydrogen sulfide in methanol containing sodium methoxide gave 2′-deoxy-6-thioinosine ( 10 ) in 93% yield. Similarly, 5 was transformed into 2′-deoxy-6-thioguanosine (β-TGdR, 11 ) in 71 % yield. Reaction of the sodium salt of 2 with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 8 ) gave N-7 and N-9 glycosylated products 13 and 9 , respectively. Debenzylation of 9 with boron trichloride at ?78° gave the versatile intermediate 2-amino-6-chloro-9-β-D-arabinofuranosyl-purine ( 14 ) in 62% yield. Direct treatment of 14 with sodium hydrosulfide furnished ara-6-thioguanine ( 16 ). Alkaline hydrolysis of 14 readily gave 9-β-D-arabinofuranosylguanine (araG, 17 ), which on subsequent phosphorylation with phosphorus oxychloride in trimethyl phosphate afforded araG 5′-monophosphate ( 18 ).  相似文献   

16.
The 2′-deoxyribofuranose analog of the naturally occurring antibiotics SF-2140 and neosidomycin were prepared by the direct glycosylation of the sodium salts of the appropriate indole derivatives, with 1-chloro-2- deoxy-3,5-di-O-p-toluoyl-α-D-erythropentofuranose ( 5 ). Thus, treatment of the sodium salt of 4-methoxy-1H- indol-3-ylacetonitrile ( 4a ) with 5 provided the blocked nucleoside, 4-methoxy-1-(2-deoxy-3,5-di-O-p-toluoyl-β- D-erythropentofuranosyl)-1H-indol-3-ylacetonitrile ( 6a ), which was treated with sodium methoxide to yield the SF-2140 analog, 4-methoxy-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indol-3- ylacetonitrile ( 7a ). The neosidomycin analog ( 8 ) was prepared by treatment of the sodium salt of 1H-indol-3-ylacetonitrile ( 4b ) with 5 to obtain the blocked intermediate 1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythropentofuranosyl) ?1H-indol-3-ylace-tonitrile ( 6b ) followed by sodium methoxide treatment to give 1-(2-deoxy-β-D-erythropentofuranosyl)-1H- indol-3-ylacetonitrile ( 7b ) and finally conversion of the nitrile function of 7b to provide 1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indol-3-ylacetamide ( 8 ). In a similar manner, indole ( 9a ) and several other substituted indoles including 1H-indole-4-carbonitrile ( 9b ), 4-nitro-1H-indole ( 9c ), 4-chloro-1H-indole-2-carboxamide ( 9d ) and 4-chloro-1H-indole-2-carbonitrile ( 9e ) were each glycosylated and deprotected to provide 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11a ), 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole-4- carbonitrile ( 11b ), 4-nitro-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11c ), 4-chloro-1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indole-2-carboxamide ( 11d ) and 4-chloro-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole-2-carbonitrile ( 11e ), respectively. The 2′-deoxyadenosine analog in the indole ring system was prepared for the first time by reduction of the nitro group of 11c using palladium on carbon thus providing 4-amino-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole ( 16 , 1,3,7-trideaza-2′-deoxyadenosine).  相似文献   

17.
2-(Arylamino)pyrimidin-4-ones were synthesized, silylated, and condensed with l,2,3,5-tetra-O-acetyl-β- d-ribofuranoside to afford the corresponding N 2-aryl protected isocytidines. Deprotection of the acetylated isocytidines using saturated NH3 in MeOH solution gave 1-(β-d-ribofuranosyl)-2-(arylamino)-4-pyrimidinones. Methyl 2-deoxy-3,5-di-O-toluyl-α/β-d-ribofuranoside was prepared and condensed with the previously silylated bases to afford the anomeric mixture of protected nucleosides. The pure β-anomers were synthesized with better yield by treating the sodium salts of N 2-arylisocytosine derivatives with 2-deoxy-3,5-di-O-toluyl-α-d-ribofuranosyl chloride. Deprotection of the latter anomers afforded the corresponding free hydroxyl derivatives. The synthesized free nucleosides are under antiviral and oligonucleotide investigations.  相似文献   

18.
Summary. 2-(Arylamino)pyrimidin-4-ones were synthesized, silylated, and condensed with l,2,3,5-tetra-O-acetyl-β- d-ribofuranoside to afford the corresponding N 2-aryl protected isocytidines. Deprotection of the acetylated isocytidines using saturated NH3 in MeOH solution gave 1-(β-d-ribofuranosyl)-2-(arylamino)-4-pyrimidinones. Methyl 2-deoxy-3,5-di-O-toluyl-α/β-d-ribofuranoside was prepared and condensed with the previously silylated bases to afford the anomeric mixture of protected nucleosides. The pure β-anomers were synthesized with better yield by treating the sodium salts of N 2-arylisocytosine derivatives with 2-deoxy-3,5-di-O-toluyl-α-d-ribofuranosyl chloride. Deprotection of the latter anomers afforded the corresponding free hydroxyl derivatives. The synthesized free nucleosides are under antiviral and oligonucleotide investigations.  相似文献   

19.
Syntheses of 1b-d is described using 1-chloro-2-deoxy-3,5-di-p-toluoyl-D-erythro-pentosyl chloride.  相似文献   

20.
The synthesis of the 7-deaza-2′-deoxyinosine derivatives 3a – c with chloro, bromo, and iodo substituents at position 7 is described. Glycosylation of the 7-halogenated 6-chloro-7-deazapurines 4a – c or of the 7-halogenated 6-chloro-7-deaza-2-(methylthio)purines 9a – c with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) furnished the intermediates 7a – c and 11a – c , respectively, which gave, upon deprotection, the desired nucleosides 3a – c .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号