首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three heteroleptic iridium(III) complexes 1, 2 and 3 bearing two cyclometalating 2′,6′-difluoro-2,3′-bipyridyl (dfpypy) chelates and one pyridyl pyrazolate ligand have been investigated by using the density functional theory/time-dependent density functional theory method to study the influence of the different substituent groups (―CF3 and ―N(CH3)2 moiety on the electronic structures, phosphorescent properties and the organic light-emitting diode performance. The lowest energy absorption wavelength calculated is in good agreement with the experimental value. The lowest energy emissions of complexes 1, 2 and 3 are localised at 454, 534 and 821 nm, respectively. Ionisation potential and electron affinity have been calculated to evaluate the injection abilities of holes and electrons into these complexes. The calculated results show that the different substitute groups affect the charge transfer rate and balance. Finally, we hope that this study can provide a good guide to the future design and synthesis of novel phosphorescent materials for use in the organic light-emitting diodes.  相似文献   

2.
Abstract

Experimental results may instruct or befuddle, and we rejoice or agonize accordingly. And yet, more may be learned from questions raised than from answers given. An example is described from the author's experience in high pressure kinetics, in which success did not convince but failure led to the goal. Beacon = a signal to guide mariners Baffle = to defeat by perplexing (Webster)  相似文献   

3.
Abstract

Without any external modulating facilities, through a precisely controlled sensing length of 11,515 μm, the integrated Mach–Zehnder interferometer sensor obtains a quadrature point and linear response in refractive index measuring range of 1.31–1.42 at the wavelength of 1,550 nm. Combined with structure optimization and surface treatment of sensing arm, the sensitivity is measured as 225.4 dB/RIU, and the sensing response time is less than 20 s to analyte solutions. Cost-efficient polymers are used as waveguide materials, and a microfluidic system is achieved.  相似文献   

4.
Abstract

We present a quantitative k.P Hamiltonian which describes analytically the composition dependence of the energy gap, interband momentum matrix element, band edge effective masses and conduction band dispersion of GaNXAs1?x alloys for low N concentrations (x < ~ 0.05). The model has been confirmed using an sp3s? tight-binding Hamiltonian whose results agree well both with experiment and with previous pseudopotential calculations. The model should be of wide use to guide the future development of this material system and its applications.  相似文献   

5.
BackgroundThe classification of benign versus malignant breast lesions on multi-sequence Magnetic Resonance Imaging (MRI) is a challenging task since breast lesions are heterogeneous and complex. Recently, deep learning methods have been used for breast lesion diagnosis with raw image input. However, without the guidance of domain knowledge, these data-driven methods cannot ensure that the features extracted from images are comprehensive for breast cancer diagnosis. Specifically, these features are difficult to relate to clinically relevant phenomena.PurposeInspired by the cognition process of radiologists, we propose a Knowledge-driven Feature Learning and Integration (KFLI) framework, to discriminate between benign and malignant breast lesions using Multi-sequences MRI.MethodsStarting from sequence division based on characteristics, we use domain knowledge to guide the feature learning process so that the feature vectors of sub-sequence are constrained to lie in characteristic-related semantic space. Then, different deep networks are designed to extract various sub-sequence features. Furthermore, a weighting module is employed for the integration of the features extracted from different sub-sequence images adaptively.ResultsThe KFLI is a domain knowledge and deep network ensemble, which can extract sufficient and effective features from each sub-sequence for a comprehensive diagnosis of breast cancer. Experiments on 100 MRI studies have demonstrated that the KFLI achieves sensitivity, specificity, and accuracy of 84.6%, 85.7% and 85.0%, respectively, which outperforms other state-of-the-art algorithms.  相似文献   

6.
A method for calculating the complex roots of a nonlinear equation is described whereby the solution of the problem is reduced to quadratures. Applications of the method to the investigation of dispersion relations for various open waveguide structures with a complex dielectric permittivity are discussed. The possibilities of the prismatic excitation of modes corresponding to the roots of the dispersion relations on different Riemann sheets are analyzed. Solutions are obtained for the inverse problems of reconstructing complex mode propagation constants and determining the parameters of films that guide waveguide and leaky modes. The solution is based on processing of the angular dependence of the reflection coefficient in a prismatic excitation scheme. Zh. Tekh. Fiz. 68, 88–95 (April 1998)  相似文献   

7.
8.
Abstract

Raman spectroscopy is an important and powerful technique for analyzing the chemical composition of biological or nonbiological samples in many fields. A serious challenge frequently encountered in Raman measurements arises from the existence of the concurrent fluorescence background. The fluorescence intensity is normally several orders of magnitude larger than the Raman scattering signal, especially in biological samples. Such fluorescence background must be suppressed in order to obtain accurate Raman spectra. Several different techniques have been explored for this purpose. These techniques could be generally grouped into time-domain, frequency-domain, wavelength-domain, and computational methods in addition to various Raman enhancement techniques and other unconventional methods. This review briefly describes the fundamental principles of each group of methods, reports the most recent advances, and makes comparison across those major categories of techniques in terms of cost and performance in a hope to guide interested readers to select proper methods for specific applications.  相似文献   

9.
A pronounced Curie-like upturn of the magnetic susceptibility χ( T ) of the quasi one-dimensional spin chain compound Ba2V3O9 has been found recently [#!kaul:02!#]. Frequently this is taken as a signature for a staggered field mechanism due to the presence of g-factor anisotropy and Dzyaloshinskii-Moriya interaction. We calculate this contribution within a realistic structure of vanadium 3 d- and oxygen 2 p-orbitals and conclude that this mechanism is far too small to explain experimental results. We propose that the Curie term is rather due to a segmentation of spin chains caused by broken magnetic bonds which leads to uncompensated S = ? spins of segments with odd numbers of spins. Using the finite-temperature Lanczos method we calculate their effective moment and show that ∼ 1% of broken magnetic bonds is sufficient to reproduce the anomalous low-T behavior of χ( T ) in Ba2V3O9. Received 19 December 2002 / Received in final form 29 January 2003 Published online 14 March 2003  相似文献   

10.
G. Grüner 《物理学进展》2013,62(6):941-1024
The macroscopic and local properties of 3d transition metal impurities in normal metals are reviewed and compared with the theoretical situation in this field.

The parameters of the Anderson and s-d exchange models are derived from direct and indirect experimental data using as a guide the Hartree-Fock approximation of the non-degenerate Anderson model. The basic observations about the magnetic-non-magnetic transition, and the behaviour of the magnetic, thermal and transport properties when going through the transition region are demonstrated for specific examples. A detailed comparison between the present status of theory and experiment is performed by inspecting the large body of experimental data of two typical alloys, which served as testing materials for the development of the existing theories. CuFe is often regarded as a typical ‘yes moment’ system, and the experiments are therefore compared with the predictions based on the s-d exchange model; in the case of AlMn, the spin-fluctuation concept was chosen as a theoretical basis. It is shown that various approaches of the models fail to describe the fine experimental details. Evidence is presented which calls for a unified theory with no distinction between magnetic (Kondo-type) and non-magnetic (spin-fluctuation) alloys. It is suggested that the range of applicability of a model depends not only on the basic parameters of the dilute alloy but on the temperature, too, and the question of the relevance of the models to the actual state of affairs is to be answered by inspecting the temperature regions where the various approximations of the models are expected to work; the TTK properties are compared with the Kondo approach, the Tˇ-TK properties with the spin fluctuation model, although in the latter case the analysis is based on the concept of a narrow resonance level, which is not a feature of the spin-fluctuation concept only.

Finally, the basic experimental facts and indications are absorbed into a phenomenological model, which describes both the single-particle resonances and the many-body effects involved in resonance formation in classical dilute alloys.  相似文献   

11.
In this work, results of X-band ESR spectroscopy, ac-magnetic susceptibility and X-ray powder diffraction measurements on Li1-xNi 1+x O2 (x = 0.02 and x = 0.07) are presented and discussed. While the susceptibility of the compound with x = 0.02 is shown to follow a Curie-Weiss law, with a Weiss temperature of the order of 30 K, the compound with x = 0.07 is found to order ferromagnetically below K. However, an additional anomaly is observed in the magnetic properties of this latter compound at around 240 K. We attribute this anomaly to the presence of macroscopic Ni-rich regions which order ferrimagnetically below this temperature. This phenomenon is different from the bulk ferromagnetism that occurs at much lower temperatures, and allows us to discard earlier suggestions proposed in the literature in which the 240 K anomaly has been considered as denoting an intrinsic phenomenon. Received 14 May 1999 and Received in final form 5 August 1999  相似文献   

12.
ABSTRACT

Stressed liquid crystals (SLCs) have emerged as promising tunable electro-optical materials more than a decade ago. They are optically transparent and are characterized by a giant phase modulation of the incident light (Nπ, N >> 1), fast (millisecond and shorter) electro-optical response, and a relatively low driving voltage (~1 V/μm). Surprisingly, despite their advanced electro-optical performance, these new materials did not receive due attention in the research community. One possible reason of such an inadequate interest in SLCs is the lack of the well-documented procedure describing how to actually produce these materials. This paper is aimed at the development of such a step-by-step practical guide suitable for experimentalist and engineers. The proposed technology is applied to produce and characterize SLCs. In addition, some applications of the materials are briefly discussed and a broader overview of their possible use is outlined.  相似文献   

13.
Abstract

Zinc hydroxystannate (ZHS) coated dendritic-fibrillar barium carbonate (ZHS/BaCO3-F) was obtained by a simple ultrasonic assisted method at room temperature without any guide reagent; the flame retardant soft poly (vinyl chloride) (S-PVC) treated with ZHS/BaCO3-F was prepared by melt blending and studied by the limiting oxygen index (LOI), univeral tensile testing machine, thermogravimetric analyzer-Fourier transform infrared spectroscopy (TGA/FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that ZHS/BaCO3-F had a good dispersion in the PVC matrix, increased the LOI value and reinforced the S-PVC. The ZHS/BaCO3-F played its role during the first degradation stage of S-PVC; the integrated effects of the earlier dehydrochlorination of ZHS on PVC, the reaction of ZHS/BaCO3-F and HCl, and the thermal degradation of ZHS resulted in the production of H2O, CO2, olefins, aryl compounds, carboxylic compounds and alcohols, and the decrease of HCl production.  相似文献   

14.
IntroductionQuantitative MRI (qMRI) parameters have been increasingly used to develop predictive models to accurately monitor treatment response in prostate cancer after radiotherapy. To reliably detect changes in signal due to treatment response, predictive models require qMRI parameters with high repeatability and reproducibility. The purpose of this study was to measure qMRI parameter uncertainties in both commercial and in-house developed phantoms to guide the development of robust predictive models for monitoring treatment response.Materials and methodsADC, T1, and R2* values were acquired across three 3 T scanners with a prostate-specific qMRI protocol using the NIST/ISMRM system phantom, RSNA/NIST diffusion phantom, and an in-house phantom. A B1 field map was acquired to correct for flip angle inhomogeneity in T1 maps. All sequences were repeated in each scan to assess within-session repeatability. Weekly scans were acquired on one scanner for three months with the in-house phantom. Between-session repeatability was measured with test-retest scans 6-months apart on all scanners with all phantoms. Accuracy, defined as percentage deviation from reference value for ADC and T1, was evaluated using the system and diffusion phantoms. Repeatability and reproducibility coefficients of variation (%CV) were calculated for all qMRI parameters on all phantoms.ResultsOverall, repeatability CV of ADC was <2.40%, reproducibility CV was <3.98%, and accuracy ranged between −8.0% to 2.7% across all scanners. Applying B1 correction on T1 measurements significantly improved the repeatability and reproducibility (p<0.05) but increased error in accuracy (p<0.001). Repeatability and reproducibility of R2* was <4.5% and <7.3% respectively in the system phantom across all scanners.ConclusionRepeatability, reproducibility, and accuracy in qMRI parameters from a prostate-specific protocol was estimated using both commercial and in-house phantoms. Results from this work will be used to identify robust qMRI parameters for use in the development of predictive models to longitudinally monitor treatment response for prostate cancer in current and future clinical trials.  相似文献   

15.
The Rhodes-Wohlfarth parameter extended to ferroelectrics by Tokunaga [J. Phys. Soc. Jap. 57, 4275 (1988)] is here analyzed within the model. It is shown that it can be directly related with the displacive degree of the transition as described by the ratio C / E 0 , between the non-local coupling, C, driving the transition and the depth of the energy well, E0, associated with the distorted structure. However, the Rhodes-Wohlfarth parameter becomes asymptotically constant as C / E 0 decreases, i.e. for systems closer to the order disorder limit. Under this viewpoint, the very limited range of values observed for this experimental parameter is explained and is shown that, in general, it can only assess quantitatively the character of the transition in rather displacive cases. The argument can be generalized to more complex systems, and when applied to well known materials, a rough estimation of the displacive degree and the relevant microscopic energetic parameters in rather displacive ferroelectrics is possible. Received 23 December 1998 and Received in final form 4 May 1999  相似文献   

16.
A test space is a collection of non-empty sets, usually construed as the catalogue of (discrete) outcome sets associated with a family of experiments. Subject to a simple combinatorial condition called algebraicity, a test space gives rise to a “quantum logic”—that is, an orthoalgebra. Conversely, all orthoalgebras arise naturally from algebraic test spaces. In non-relativistic quantum mechanics, the relevant test space is the set ℱ F(H) of frames (unordered orthonormal bases) of a Hilbert space H. The corresponding logic is the usual one, i.e., the projection lattice L(H) of H. The test space ℱ F(H) has a strong symmetry property with respect to the unitary group of H, namely, that any bijection between two frames lifts to a unitary operator. In this paper, we consider test spaces enjoying the same symmetry property relative to an action by a compact topological group. We show that such a test space, if algebraic, gives rise to a compact, atomistic topological orthoalgebra. We also present a construction that generates such a test space from purely group-theoretic data, and obtain a simple criterion for this test space to be algebraic. PACS: 02.10.Ab; 02.20.Bb; 03.65.Ta.  相似文献   

17.
In this talk we introduce a Weierstrass-like system of equations corresponding to CP N -1 fields in two dimensions. Then using this representation we introduce a vector in R N 2-1 and treating this vector as the radius vector of a surface immersed in R N 2-1 we discuss to what extent the associated metric describes the geometry of the CP N -1 maps. We show that for the holomorphic maps - the correspondence is exact; while for the more general fields we have to go beyond the Weierstrass system and add extra terms. Received 1st August 2001 / Received in final form 18 October 2001 Published online 2 October 2002 RID="a" ID="a"Work done in collaboration with M. Grundland e-mail: w.j.zakrzewski@durham.ac.uk  相似文献   

18.
We investigate a simple explanation for the high maximum gap to T c ratio found experimentally in high T c compounds. We ascribe this observation to the lowering of T c by boson scattering of electrons between parts of the Fermi surface with opposite sign for the order parameter. We study the simplest possible model within this picture. Our quantitative results show that we can account for experiment for a rather small value of the coupling constant, all the other ingredients of our model being already known to exist in these compounds. A striking implication of this theory is the fairly high value of the critical temperature in the absence of boson scattering. Received 12 March 2001 and Received in final form 25 May 2001  相似文献   

19.
PurposeTo develop a fast and accurate convolutional neural network based method for segmentation of thalamic nuclei.MethodsA cascaded multi-planar scheme with a modified residual U-Net architecture was used to segment thalamic nuclei on conventional and white-matter-nulled (WMn) magnetization prepared rapid gradient echo (MPRAGE) data. A single network was optimized to work with images from healthy controls and patients with multiple sclerosis (MS) and essential tremor (ET), acquired at both 3 T and 7 T field strengths. WMn-MPRAGE images were manually delineated by a trained neuroradiologist using the Morel histological atlas as a guide to generate reference ground truth labels. Dice similarity coefficient and volume similarity index (VSI) were used to evaluate performance. Clinical utility was demonstrated by applying this method to study the effect of MS on thalamic nuclei atrophy.ResultsSegmentation of each thalamus into twelve nuclei was achieved in under a minute. For 7 T WMn-MPRAGE, the proposed method outperforms current state-of-the-art on patients with ET with statistically significant improvements in Dice for five nuclei (increase in the range of 0.05–0.18) and VSI for four nuclei (increase in the range of 0.05–0.19), while performing comparably for healthy and MS subjects. Dice and VSI achieved using 7 T WMn-MPRAGE data are comparable to those using 3 T WMn-MPRAGE data. For conventional MPRAGE, the proposed method shows a statistically significant Dice improvement in the range of 0.14–0.63 over FreeSurfer for all nuclei and disease types. Effect of noise on network performance shows robustness to images with SNR as low as half the baseline SNR. Atrophy of four thalamic nuclei and whole thalamus was observed for MS patients compared to healthy control subjects, after controlling for the effect of parallel imaging, intracranial volume, gender, and age (p < 0.004).ConclusionThe proposed segmentation method is fast, accurate, performs well across disease types and field strengths, and shows great potential for improving our understanding of thalamic nuclei involvement in neurological diseases.  相似文献   

20.
We consider a modified version of the one-dimensional Hubbard model, the t 1 - t 2 Hubbard chain, which includes an additional next-nearest-neighbor hopping. It has been shown that at weak coupling this model has a Luttinger liquid phase or a spin liquid phase depending upon the ratio of t2 to t1. Additionally if the on-site interaction U is large enough, the ground state is fully polarized. Using exact diagonalization and the density-matrix renormalization group, we show that the transition to the ferromagnetic phase is either of first or second order depending on whether the Luttinger liquid or spin liquid is being destabilized. Since we work at T =0, the second order transition is a quantum magnetic critical point. Received 21 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号