首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A diiron dithiolate complex 1 containing 1,8‐naphthalic anhydride bridge was prepared, which possessed the lowest reduction potential for the synthetic diiron complexes modeled on the active site of [FeFe] hydrogenase reported so far. For the first time, oxidative quenching of the excited Ru(bpy)32+* through electron transfer to a bio‐inspired [2Fe2S] complex was corroborated. Hydrogen evolution, driven by visible light, was successfully observed for a three‐component system, consisting of Ru(bpy)32+, complex 1 , and EDTA as electron donor in aqueous/organic media. These results provide a basis and also opportunity to develop a photo water splitting system employing Fe‐based catalysts without sacrificial electron donors.  相似文献   

2.
Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3]]BPh4 (7) complex was also prepared by reacting RuCl2(bpy)2.2H2O with phosphite and ethanol. Treatment of the chloro complexes 1-3 and 7 with NaBH4 yielded the hydride [RuH(N-N)P3]BPh4 (4-6) and [RuH(bpy)2P]BPh4 (8) derivatives, which were characterized spectroscopically and by the X-ray crystal structure determination of [RuH(bpy)[P(OEt)3]3]BPh4 (4a). Protonation reaction of the new hydrides with Br?nsted acid was studied and led to dicationic [Ru(eta2-H2)(N-N)P3]2+ (9, 10) and [Ru(eta(2-H2)(bpy)2P]2+ (11) dihydrogen derivatives. The presence of the eta2-H2 ligand was indicated by a short T(1 min) value and by the measurements of the J(HD) in the [Ru](eta2-HD) isotopomers. From T(1 min) and J(HD) values the H-H distances of the dihydrogen complexes were also calculated. A series of ruthenium complexes, [RuL(N-N)P3](BPh4)2 and [RuL(bpy)2P](BPh4)2 (P = P(OEt)3; L = H2O, CO, 4-CH3C6H4NC, CH3CN, 4-CH3C6H4CN, PPh(OEt)2], was prepared by substituting the labile eta2-H2 ligand in the 9, 10, 11 derivatives. The reactions of the new hydrides 4-6 and 8 with both mono- and bis(aryldiazonium) cations were studied and led to aryldiazene [Ru(C6H5N=NH)(N-N)P3](BPh4)2 (19, 21), [[Ru(N-N)P3]2(mu-4,4'-NH=NC6H4-C6H4N=NH)](BPh4)4 (20), and [Ru(C6H5N=NH)(bpy)2P](BPh4)2 (22) derivatives. Also the heteroallenes CO2 and CS2 reacted with [RuH(bpy)2P]BPh4, yielding the formato [Ru[eta1-OC(H)=O](bpy)2P]BPh4 and dithioformato [Ru[eta1-SC(H)=S](bpy)2P]BPh4 derivatives.  相似文献   

3.
The photo-hydrogen-evolving activity (activity to enhance the photochemical EDTA-reduction of water into molecular hydrogen) was evaluated for three different Ru(II)Pt(II) dimers with a general formula of [(bpy)2Ru(micro-bridge)PtCl2]2+(bpy = 2,2'-bipyridine; bridge = 4,4'-bis(N-(3-aminopropyl)carbamoyl)-2,2'-bipyridine (L1), 2,3-bis(2-pyridyl)pyrazine (L2), and 4,4'-bis(N-(4-pyridyl)methylcarbamoyl)-2,2'-bipyridine (L3); EDTA = ethylenediaminetetraacetic acid disodium salt). A new Ru(II)Pt(II) complex, [(bpy)2Ru(micro-L3)PtCl2]2+, was synthesized and characterized. It was confirmed that all three compounds are ineffective towards photochemical H2 production. In each case, an acetate-buffer solution (pH = 5) containing the Ru(II)Pt(II) dimer and EDTA was photolysed using a 350-W Xe lamp under an Ar atmosphere, during which the amount of H2 evolved was analysed by gas chromatography. Additional photolysis experiments were carried out by adding [Ru(bpy)3]2+ and methylviologen (N,N'-dimethyl-4,4'-bipyridinium) to the photolysis solutions described above to test the H2-evolving activity of the Pt(II) unit involved in these Ru(II)Pt(II) dimers. As a result, the Pt(II) units involved in the L1 and L2 compounds were found to be active as an H2-evolving catalyst, while that of the L3 compound was found to show no activity at all. The extent of intramolecular electron-transfer quenching from the 3MLCT excited state of the [Ru(bpy)3]2+ derivative to the tethering Pt(II) catalyst centre was investigated by comparison of the luminescence spectra of these compounds, together with the related compounds. The results showed that the quenching of the 3MLCT luminescence is not at all enhanced in either the L1 or the L3 compounds. On the other hand, the L2 compound is strongly quenched as previously reported. In addition to the above studies, the H2-evolving activity of some Pt(II) monomers, cis-PtCl2(NH3)2, PtCl2(en)(en = ethylenediamine), cis-PtCl2(4-methylpyridine)2, PtCl2(2,2'-bipyrimidine), PtCl2(4,4'-dicarboxy-2,2'-bipyridine), and [PtCl(terpy)]+(terpy = 2,2':6',2'-terpyridine), were similarly investigated in the presence of EDTA, [Ru(bpy)3]2+ and methylviologen, since they were regarded as structural analogues of the Pt(II) units involved in the L1-L3 compounds. The compounds having a cis-Pt(II)Cl2 unit were generally found to show high H2-evolving activity. This was interpreted in terms of the ligation of negatively charged chloride anions leading to the destabilization of the Pt(II) dz2 orbital responsible for the hydrogenic activation. Importantly, cis-PtCl2(4-methylpyridine)2 exhibited relatively high activity as an H2-evolving catalyst, suggesting the importance of the flexible rotation of the pyridyl ligands for efficient hydrogenic activation at the axial site of the Pt(II) ion. The DFT calculations also showed the validity of the structure-activity relationship discussed above for the L3 compound.  相似文献   

4.
The new heteroditopic ligand 2,3-dihydroxy-N-(1,10-phenanthroline-5-yl)benzamide (H2-L3) was synthesized and coordinated to [Ru(bpy)2(phen)]2+- and [ReBr(CO)3(phen)]-type luminophores (bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline). The resulting chemosensors [Ru(bpy)2(H2-L3)]2+ and [ReBr(CO)3(H2-L3)] were fully characterized and their solid-state structures and spectroscopic properties were investigated to assess how the photophysical properties of the luminescent signaling units affect the performance of the sensors. [Ru(bpy)2(H2-L3)]2+ and [ReBr(CO)3(H2-L3)] both signal the presence and concentration of molybdate and vanadate in aqueous acetonitrile through a decrease in emission intensity. [ReBr(CO)3(H2-L3)] also detects tungstate. Due to the higher emission intensity of the Ru-based sensor, its detection limits for molybdate (43 microg L(-1)) and vanadate (24 microg L(-1)) are almost 1 order of magnitude lower than the ones achieved with the Re-based sensor. The optimum working pH of the chemosensors is determined by the pKa values of the 2-hydroxy-groups of the receptor units: pH 4 for [ReBr(CO)3(H2-L3)] and pH 3 for [Ru(bpy)2(H2-L3)]2+. Both sensors are selective: equimolar amounts of PO4(3-), SO4(2-), ReO4-, Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) do not interfere with the detection of molybdate or vanadate.  相似文献   

5.
The cation cis-[Ru(bpy)(2)(5CNU)(2)](2+) (bpy = 2,2'-bipyridine; 5CNU = 5-cyanouracil) was synthesized and investigated for use as a potential light-activated dual-action therapeutic agent. The complex undergoes efficient photoinduced 5CNU ligand exchange for solvent water molecules, thus simultaneously releasing biologically active 5CNU and generating [Ru(bpy)(2)(H(2)O)(2)](2+). The latter binds covalently to ds-DNA, such that photolysis results in the generation of 3 equiv of potential therapeutic agents from a single molecule.  相似文献   

6.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

7.
程明伦  张雄飞  朱勇  王梅 《催化学报》2021,42(2):310-319
利用基于非贵金属的分子催化剂通过光驱动催化CO2还原生成CO是将太阳能储存为化学能和缓解CO2温室效应的有效途径之一,具有重要的科学意义和潜在的应用前景.已报道的非贵金属分子催化剂,大多数对于光驱动CO2还原表现出缓慢的催化反应速率和/或对CO产物的低选择性,反应常常伴随着质子还原产氢反应,只有很少几种非贵金属分子催化剂对光催化CO2还原生成CO表现出高催化反应速率(>100 h?1)和高选择性.研究表明,双核过渡金属配合物由于分子中邻近的两个金属中心的协同催化作用,对于CO2还原生成CO的催化活性明显高于相应的单核配合物.因此,具有两个邻近的金属离子的非贵金属双核配合物有望作为CO2选择性还原的高效分子催化剂.我们最近的研究发现,具有刚性、共轭亚苯基二硫桥结构的[FeFe]-氢化酶模拟物[(μ-bdt)Fe2(CO)6](1,bdt=苯-1,2-二巯基)能够高活性、高选择性地光化学还原CO2至CO,而与其类似的模拟物[(μ-edt)Fe2(CO)6](2,edt=乙烷-1,2-巯基)则不具有光催化还原CO2活性,表明铁铁氢化酶模拟物中硫-硫桥的结构是影响模拟物的催化性能的重要结构因素之一.可见光照射1/[Ru(bpy)3]2+/BIH(BIH=1,3-二甲基-2-苯基-2,3-二氢-1H-苯并[d]-咪唑)体系4.5 h,1催化生成CO的循环数(TON)为710,在初始1 h的转化率(TOF)为7.12 min^-1,CO的选择性达到97%,内量子效率为2.8%.有趣的是,向体系中加入TEOA时可以调节1的催化选择性,光化学反应能够在CO2还原产生CO和质子还原产生H2之间进行切换.此外,采用稳态荧光和瞬态吸收光谱研究了光催化体系中的电子转移,提出可能的光催化反应机理.该研究结果揭示了刚性硫-硫桥结构的氢化酶模拟物对光化学CO2还原至CO的特殊催化活性,拓展了铁铁氢化酶模拟物的催化多功能性.  相似文献   

8.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

9.
The reactions of bidentate diimine ligands (L2) with binuclear [Ru(L1)(CO)Cl2]2 complexes [L1 not equal to L2 = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), di(2-pyridyl)ketone (dpk), di(2-pyridyl)amine (dpa)] result in cleavage of the dichloride bridge and the formation of cationic [Ru(L1)(L2)(CO)Cl]+ complexes. In addition to spectroscopic characterization, the structures of the [Ru(bpy)(phen)(CO)Cl]+, [Ru(4,4'-Me2bpy)(5,6-Me2phen)(CO)Cl]+ (as two polymorphs), [Ru(4,4'-Me2bpy)(4,7-Me2phen)(CO)Cl]+, [Ru(bpy)(dpa)(CO)Cl]+, [Ru(5,5'-Me2bpy)(dpa)(CO)Cl]+, [Ru(bpy)(dpk)(CO)Cl]+, and [Ru(4,4'-Me2bpy)(dpk)(CO)Cl]+ cations were confirmed by single crystal X-ray diffraction studies. In each case, the structurally characterized complex had the carbonyl ligand trans to a nitrogen from the incoming diimine ligand, these complexes corresponding to the main isomers isolated from the reaction mixtures. The synthesis of [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)(NO3)]+ from [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)Cl]+ and AgNO3 demonstrates that exchange of the chloro ligand can be achieved.  相似文献   

10.
The reaction of [Ru(bpy)2L(H2O)]2+ (bpy = 2,2'-bipyridine, L = imidazole, water) with reduced horse heart cytochrome c results in coordination of [RuII(bpy)2L] at the His 33 and His 26 sites. Coordination at the His 33 site gave a diastereomeric [RuII(bpy)2L]-His-cyt c(II) mixture favoring the lambda-Ru form regardless of the substituent on the bipyridine ligands, while substitution at the more buried His 26 site gave an isomeric distribution that varies according to the substituent on the bipyridine ligands. The diastereomeric aquoproteins (L = H2O) are distinguished by their redox potentials and their conversion to the corresponding fluorescent imidazole proteins. Intramolecular electron transfer between the reduced ruthenium bipyridine and cyt c(III) in [RuII(bpy.)(bpy)L]-His33-cyt c(III) was determined by reductive pulse radiolysis using the aqueous electron as a reducing agent, kret = (2.0 +/- 0.3) x 10(5) s-1, and kret is independent of the sixth ligand L = H2O, imidazole. In addition, the rate constant for intramolecular electron transfer from cyt c(II) to the ruthenium(III) center in [RuIII(bpy)2L]-His33-cyt c(II) was determined by oxidative pulse radiolysis using azide and carbonate radicals. This rate is very sensitive to the nature of the sixth ligand. When L = H2O, the intramolecular electron-transfer rate for the major diastereomer lambda-cis-[RuIII (bpy)2(H2O)]-His33-cyt c(II) is k = 1.1 x 10(4) s-1 and is independent of pH between 5.6 and 8.3. The minor delta-cis-[RuIII(bpy)2(H2O)]-His33-cyt c(II) isomer has pH-dependent electrochemistry and a lower rate of intramolecular electron transfer. Complete conversion from L = H2O to L = imidazole is slow, requiring more than 7 days in 1 M imidazole. A lower limit (k > 2 x 10(6) s-1) for the intramolecular electron-transfer rate constant in [RuIII(bpy)2(L)]-His33-cyt c(II), L = imidazole, could be obtained by pulse radiolysis in the absence of the slower reacting aquo species. This observation is in agreement with the value of 3 x 10(6) s-1 measured by flash photolysis. Earlier pulse radiolysis experiments primarily measured the aquoligated ruthenium protein, while the flash photolysis experiments measured the imidazole-ligated fraction because it is the only species oxidatively quenched in the photoinduced reactions. Intramolecular electron-transfer reactions for a new series of ruthenium bipyridine complexes, [Ru(dabpy)2L]-His33-cyt c proteins (dabpy = 4,4'-diamino-2,2'-bipyridine) (L = imidazole, pyridine, isonicotinamide and pyrazine), proceed with lower driving force, resulting in slower rate constants amenable to measurement by oxidative pulse radiolysis. The electron-transfer rate constants for this series spanned a wide range of the Marcus log k vs delta G plot.  相似文献   

11.
Reactions of hydride complexes of ruthenium(II) with hydride acceptors have been examined for Ru(terpy)(bpy)H(+), Ru(terpy)(dmb)H(+), and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) in aqueous media at 25 °C (terpy = 2,2';6',2'-terpyridine, bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine). The acceptors include CO(2), CO, CH(2)O, and H(3)O(+). CO reacts with Ru(terpy)(dmb)H(+) with a rate constant of 1.2 (0.2) × 10(1) M(-1) s(-1), but for Ru(η(6)-C(6)Me(6))(bpy)(H)(+), the reaction was very slow, k ≤ 0.1 M(-1) s(-1). Ru(terpy)(bpy)H(+) and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) react with CH(2)O with rate constants of (6 ± 4) × 10(6) and 1.1 × 10(3) M(-1) s(-1), respectively. The reaction of Ru(η(6)-C(6)Me(6))(bpy)(H)(+) with acid exhibits straightforward, second-order kinetics, with the rate proportional to [Ru(η(6)-C(6)Me(6))(bpy)(H)(+)] and [H(3)O(+)] and k = 2.2 × 10(1) M(-1) s(-1) (μ = 0.1 M, Na(2)SO(4) medium). However, for the case of Ru(terpy)(bpy)H(+), the protonation step is very rapid, and only the formation of the product Ru(terpy)(bpy)(H(2)O)(2+) (presumably via a dihydrogen or dihydride complex) is observed with a k(obs) of ca. 4 s(-1). The hydricities of HCO(2)(-), HCO(-), and H(3)CO(-) in water are estimated as +1.48, -0.76, and +1.57 eV/molecule (+34, -17.5, +36 kcal/mol), respectively. Theoretical studies of the reactions with CO(2) reveal a "product-like" transition state with short C-H and long M-H distances. (Reactant) Ru-H stretched 0.68 ?; (product) C-H stretched only 0.04 ?. The role of water solvent was explored by including one, two, or three water molecules in the calculation.  相似文献   

12.
Quenching of the 3MLCT excited state of [Ru(bpy)3]2+ (bpy=bipyridine) by the reduction products (MV*+ and MV0) of methyl viologen (MV2+) was studied by a combination of electrochemistry with laser flash photolysis or femtosecond pump-probe spectroscopy. Both for the bimolecular reactions and for the reactions in an Ru(bpy)3(2+)-MVn+ dyad, quenching by MV*+ and MV0 is reductive and gives the reduced ruthenium complex [Ru(bpy)3]+, in contrast to the oxidative quenching by MV2+. Rate constants of quenching (kq), and thermal charge recombination (krec) and cage escape yields (phi(ce)) were determined for the bimolecular reactions, and rates of forward (kf) and backward (kb) electron transfer in the dyad were measured for quenching by MV2+, MV*+, and MV0. The reactions in the dyad are very rapid, with values up to kf = 1.3 x 10(12) s(-1) for *Ru(bpy)3(2+)-MV*+. In addition, a long-lived (tau = 15 ps) vibrationally excited state of MV*+ with a characteristically structured absorption spectrum was detected; this was generated by direct excitation of the MV*+ moiety both at 460 and 600 nm. The results show that the direction of photoinduced electron transfer in a Ru(bpy)3-MV molecule can be switched by an externally applied bias.  相似文献   

13.
The photophysics and photochemistry of the salt [(bpy)Re(CO)(3)(py)(+)][BzBPh(3)(-)] (ReBo, where bpy = 2,2'-bipyridine, py = pyridine, Bz = C(6)H(5)CH(2) and Ph = C(6)H(5)) has been investigated in THF and CH(3)CN solutions. UV-visible absorption and steady-state emission spectroscopy indicates that in THF ReBo exists primairly as an ion-pair. A weak absorption band is observed for the salt in THF solution that is assigned to an optical ion-pair charge transfer transition. Stern-Volmer emission quenching studies indicate that BzBPh(3)(-) quenches the luminescent dpi (Re) --> pi (bpy) metal-to-ligand charge transfer excited state of the (bpy)Re(CO)(3)(py)(+) chromophore. The quenching is attributed to electron transfer from the benzylborate anion to the photoexcited Re(I) complex, (bpy(-)(*))Re(II)(CO)(3)(py)(+) + BzBPh(3)(-) --> (bpy(-)(*))Re(I)(CO)(3)(py) + BzBPh(3)(*). Laser flash photolysis studies reveal that electron transfer quenching leads to irreversible reduction of the Re(I) cation to (bpy(-)(*))Re(I)(CO)(3)(py). Photoinduced electron transfer is irreversible owing to rapid C-B bond fragmentation in the benzylboranyl radical, PhCH(2)BPh(3)(*) --> PhCH(2)(*) + BPh(3)(*). Quantitative laser flash photolysis experiments show that the quantum efficiency for production of the reduced complex (bpy(-)(*))Re(I)(CO)(3)(py) is unity, suggesting that C-B bond fragmentation in the benzylboranyl radical occurs more rapidly than return electron transfer within the geminate radical pair that is formed by photoinduced electron transfer.  相似文献   

14.
Thermolysis of solid [Ru(d(t)bpe)(CO)2Cl2](2, d(t)bpe =(t)Bu2PCH2CH2P(t)Bu2) under vacuum affords the five-coordinate complex [Ru(d(t)bpe)(CO)Cl2] (4), which was shown by X-ray crystallography to contain a weak remote agostic interaction. In solution, 4 can be readily trapped by CO, CH3CN or water to give [Ru(d(t)bpe)(CO)(L)Cl2](L = CO, 2; L = CH3CN, 6; L = H2O, 7). Reaction of 4 with AgOTf/H2O yields the tris-aqua complex [Ru(d(t)bpe)(CO)(H2O)3](OTf)2 (8), which has been structurally characterised and probed in solution by pulsed-gradient spin echo (PGSE) NMR spectroscopy. The water ligands in 8 are labile and easily substituted to give [Ru(d(t)bpe)(CO)(NCCH3)3](OTf)2 (10) and [Ru(d(t)bpe)(CO)(DMSO)3](OTf)2 (11). In the presence of CO, the tris-aqua complex undergoes water-gas shift chemistry with formation of the cationic hydride species [Ru(d(t)bpe)(CO)3H](OTf) (12) and CO2. X-Ray crystal structures of complexes 2, 4, 6, 8 and 11-12 are reported along with those for [{Ru(d(t)bpe)(CO)}2(mu-Cl)2(mu-OTf)](OTf) (3), [{Ru(d(t)bpe)(CO)}2(mu-Cl)3][Ru(d(t)bpe)(CO)Cl3](5) and [Ru(d(t)bpe)(CO)(H2O)2(OTf)](OTf)(9).  相似文献   

15.
We report the synthesis and characterization of RuC7, a complex in which a heme is covalently attached to a [Ru(bpy)(3)](2+) complex through a -(CH(2))(7)- linker. Insertion of RuC7 into horse heart apomyoglobin gives RuC7Mb, a Ru(heme)-protein conjugate in which [Ru(bpy)(3)](2+) emission is highly quenched. The rate of photoinduced electron transfer (ET) from the resting (Ru(2+)/Fe(3+)) to the transient (Ru(3+)/Fe(2+)) state of RuC7Mb is >10(8) s(-1); the back ET rate (to regenerate Ru(2+)/Fe(3+)) is 1.4 x 10(7) s(-1). Irreversible oxidative quenching by [Co(NH(3))(5)Cl](2+) generates Ru(3+)/Fe(3+): the Ru(3+) complex then oxidizes the porphyrin to a cation radical (P*+); in a subsequent step, P*+ oxidizes both Fe(3+) (to give Fe(IV)=O) and an amino acid residue. The rate of intramolecular reduction of P*+ is 9.8 x 10(3) s(-1); the rate of ferryl formation is 2.9 x 10(3) s(-1). Strong EPR signals attributable to tyrosine and tryptophan radicals were recorded after RuC7MbM(3+) (M = Fe, Mn) was flash-quenched/frozen.  相似文献   

16.
Ionic liquids are suitable media which stabilize charged intermediates favoring those mechanisms that occur through charge separation. We have used ionic liquids to develop a photocatalytic system to perform the reduction of a carbonyl group to alcohol, thus mimicking the behavior of the reductase enzymes. The photochemical cycle is based on the well-known electron transfer from the Ru(bpy)(3)2+ complex in its excited state, acting as electron donor to MV2+, which acts as electron acceptor. The initial electron transfer process can be promoted upon selective Ru(bpy)(3)2+ excitation by visible light. By means of laser flash photolysis we have provided evidence of the nature and lifetimes of the intermediates involved in the photocatalytic system. Thus, the initial electron transfer between Ru(bpy)(3)2+ triplets and viologen MV2+ forms the MV*+ radical cation, which upon accepting an H* atom from a suitable hydrogen atom donor, forms the corresponding dihydropyridine MVH+ reducing agent.  相似文献   

17.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

18.
We study the electrochemical, spectroscopic, and photocatalytic properties of a series of Ru(II)-Re(I) binuclear complexes linked by bridging ligands 1,3-bis(4'-methyl-[2,2']bipyridinyl-4-yl)propan-2-ol (bpyC3bpy) and 4-methyl-4'-[1,10]phenanthroline-[5,6-d]imidazol-2-yl)bipyridine (mfibpy) and a tetranuclear complex in which three [Re(CO)3Cl] moieties are coordinated to the central Ru using the bpyC3bpy ligands. In the bpyC3bpy binuclear complexes, 4,4'-dimethyl-2,2'-bipyridine (dmb) and 4,4'-bis(trifluoromethyl)-2,2'-bipyridine ({CF3}2bpy), as well as 2,2'-bipyridine (bpy), were used as peripheral ligands on the Ru moiety. Greatly improved photocatalytic activities were obtained only in the cases of [Ru{bpyC3bpyRe(CO)3Cl}3]2+ (RuRe3) and the binuclear complex [(dmb)2Ru(bpyC3bpy)Re(CO)3Cl]2+ (d2Ru-Re), while photocatalytic responses were extended further into the visible region. The excited state of ruthenium in all Ru-Re complexes was efficiently quenched by 1-benzyl-1,4-dihydronicotinamide (BNAH). Following reductive quenching in the case of d2Ru-Re, generation of the one-electron-reduced (OER) species, for which the added electron resides on the Ru-bound bpy end of the bridging ligand bpyC3bpy, was confirmed by transient absorption spectroscopy. The reduced Re moiety was produced via a relatively slow intramolecular electron transfer, from the reduced Ru-bound bpy to the Re site, occurring at an exchange rate (DeltaG approximately 0). Electron transfer need not be rapid, since the rate-determining process is reduction of CO2 with the OER species of the Re site. Comparison of these results with those for other bimetallic systems gives us more general architectural pointers for constructing supramolecular photocatalysts for CO2 reduction.  相似文献   

19.
The new compounds [(acac)2Ru(mu-boptz)Ru(acac)2] (1), [(bpy)2Ru(mu-boptz)Ru(bpy)2](ClO4)2 (2-(ClO4)2), and [(pap)2Ru(mu-boptz)Ru(pap)2](ClO4)2 (3-(ClO4)2) were obtained from 3,6-bis(2-hydroxyphenyl)-1,2,4,5-tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J = -36.7 cm(-1)) Ru(III) centers. We have investigated the role of both the donor and acceptor functions containing the boptz2- bridging ligand in combination with the electronically different ancillary ligands (donating acac-, moderately pi-accepting bpy, and strongly pi-accepting pap; acac = acetylacetonate, bpy = 2,2'-bipyridine pap = 2-phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal-ligand-metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(mu-boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co-ligand for both Ru(III) and Ru(II) is demonstrated by the adoption of the mixed-valent form in [L2Ru(mu-boptz)RuL2]3+, L = bpy, whereas the corresponding system with pap stabilizes the Ru(II) states to yield a phenoxyl radical ligand and the compound with L = acac- contains two Ru(III) centers connected by a tetrazine radical-anion bridge.  相似文献   

20.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号