首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of modifying additives based on detonation nanodiamonds on the tribological characteristics of polyurethane rubber is studied. Introduction of modifying additives based on detonation nanodiamonds (0.5 wt %) leads to a marked improvement in the antifriction and wear-resistance characteristics under conditions of boundary sliding friction for steel and for lubrication with water. The attained tribological characteristics (total energy loss for friction, weight loss of polymer during tribological contact, maximum admissible working pressure) are well (∼300%) above the corresponding characteristics of foreign analogs. Changes in the tribological characteristics of the formed nanocomposite material are observed, but the elastic and strength characteristics remain unchanged.  相似文献   

2.
A comparative study of the structure and mechanical and thermal characteristics of nanocomposite oriented fibers based on poly(vinyl alcohol) impregnated with the nanodiamonds prepared by detonation synthesis and fibers based on the initial unmodified polymer has been performed. The conditions and regimes of gel spinning of the nanocomposite fibers containing highly dispersed nanosized filler without its aggregation are defined. The introduction of nanosized filler particles up to 7 vol % is found to entail no marked changes in the temperature intervals of glass transition and melting in the corresponding DSC thermograms. In this case, the amorphous-crystalline structure of the matrix polymer likewise remains practically unchanged. Under the selected conditions of gel spinning, the resultant nanocomposite fibers with comparable draw ratios are characterized by a higher longitudinal elastic modulus, close values of breaking strength, and lower values of elongation at break as compared with those observed for the fibers based on the initial unmodified polymer. The nanomodified fibers show promise as reinforcing elements in construction materials for various purposes.  相似文献   

3.
Modified technique for synthesis of detonation nanodiamonds by exploding a charge of high explosives in a water shell is described. Reducing agents are introduced into water. Their use enables solution of a number of problems: the carbon content of nanodiamonds is raised from 90 to 96 wt %, the content of incombustible admixtures is dramatically diminished from 3 to 0.1 wt %, and the yield of detonation nanodiamonds becomes two times higher. A new method for determining the elemental composition is described and the oxidation of nanodiamonds under heating in the presence of atmospheric oxygen is analyzed.  相似文献   

4.
In this article we report on the investigation of the dynamics of poly(vinyl alcohol) (PVA) and PVA‐based composite films by means of dielectric spectroscopy and dynamic mechanical thermal analysis. Once the characterization of pure PVA was done, we studied the effect of a nanostructured magnetic filler (nanosized CoFe2O4 particles homogeneously dispersed within a sulfonated polystyrene matrix) on the dynamics of PVA. Our results suggest that the α‐relaxation process, corresponding to the glass transition of PVA, is affected by the filler. The glass‐transition temperature of PVA increases with filler content up to compositions of around 10 wt %, probably as a result of polymer–filler interactions that reduce the polymer chain mobility. For filler contents higher than 10 wt %, the glass‐transition temperature of PVA decreases as a result of the absorption of water that causes a plasticizing effect. The β‐ and γ‐relaxation processes of PVA are not affected by the filler as stated from both dynamic mechanical thermal analysis and dielectric spectroscopy. Nevertheless, both relaxation processes are greatly affected by the moisture content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1968–1975, 2001  相似文献   

5.
The effect of schungite filler with a carbon content of 39 wt % on the degree of crystallinity of polypropylene and polyethylene in mixed ternary composites is studied. The PP-to-PE volume ratios are 80: 20 and 50: 50. With an increase in the content of the schungite filler, the fraction of the crystalline phase in PP increases, although the degree of crystallinity of PE decreases; this behavior is related to the high affinity between polypropylene and schungite filler. The surface structure of the initial and schungite-loaded PP-PE materials of various compositions is studied via AFM. The surface structure of the above composites is shown to be different, and its specific features are dependent on the ratio between polymer components and on the order in which all components are introduced into the system.  相似文献   

6.
A procedure was developed for preparing stable dispersions of graphite nanoplates with the concentration of up to 25 mg mL–1 by two-step ultrasonic treatment of graphite in N-methyl-2-pyrrolidone. A series of elastic films based on poly-2,2′-p-oxydiphenylene-5,5′-bisdibenzimidazole oxide with the filler content of up to 45 wt % were prepared from such dispersions. Introduction of the nanoadditive into the matrix of the heterocyclic polymer results in 47% enhancement of the tensile strength of the materials and in an increase in the temperature of the 10% weight loss by 52–81°C. In addition, the films are characterized by high electrical conductivity reaching 480 S cm–1 for the composite with 45 wt % graphite nanoplates and exhibit tensoresistive properties, which allows using them in various electrotechnical devices and fabric engineering structures.  相似文献   

7.
The stress-strain and strength properties of ultrahighly filled composites based on thermoplastic polymers and ground rubber wastes are studied. The content of the elastic filler is higher than 70 wt%. As is shown, introduction of minor amounts of the plastic polymer, which serves as the binder for the filler particles, makes it possible to improve the strength properties of ultrahighly filled composites and to prepare materials of a desired thickness. A correlation between the stress-strain properties of the plastic polymer-rubber systems and the effective viscosity of the matrix polymer is established. When a polymer with homogeneous deformation and good adhesion to the elastic filler is used as the matrix, the resultant composites are characterized by properties close to those of vulcanized rubbers. A new method is proposed for processing of ground rubber wastes and preparation of materials that are similar to hard rubbers.  相似文献   

8.

A nanocomposite polymer electrolyte consisting of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a polymer matrix, lithium tetrafluoroborate (LiBF4) as a dopant salt, and titanium dioxide (TiO2) as an inert ceramic filler was prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by a sol–gel process. The ionic conductivity was investigated by alternating current impedance spectroscopy. X-ray diffraction (XRD) was used to determine the structure of the electrolyte, and its morphology was examined by scanning electron microscopy (SEM). The highest conductivity, 1.4 × 10−5 S cm−1 was obtained at 30 wt.% of LiBF4 salt addition with 6 wt.% of TiO2 filler content. Ionic conductivity was found to increase with the increase of salt concentration. The optimum value of conductivity was found at 6 wt.% of TiO2. The XRD analysis revealed that the crystalline phase of the polymer host slightly decreased with the addition of salt and filler. The SEM analysis showed that the smoother the surface of the electrolyte, the higher its conductivity.

  相似文献   

9.
A nanocomposite polymer electrolyte consisting of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a polymer matrix, lithium tetrafluoroborate (LiBF4) as a dopant salt, and titanium dioxide (TiO2) as an inert ceramic filler was prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by a sol?Cgel process. The ionic conductivity was investigated by alternating current impedance spectroscopy. X-ray diffraction (XRD) was used to determine the structure of the electrolyte, and its morphology was examined by scanning electron microscopy (SEM). The highest conductivity, 1.4?×?10?5 S cm?1 was obtained at 30 wt.% of LiBF4 salt addition with 6 wt.% of TiO2 filler content. Ionic conductivity was found to increase with the increase of salt concentration. The optimum value of conductivity was found at 6 wt.% of TiO2. The XRD analysis revealed that the crystalline phase of the polymer host slightly decreased with the addition of salt and filler. The SEM analysis showed that the smoother the surface of the electrolyte, the higher its conductivity.  相似文献   

10.
Polymer nanocomposites based on polyamide and fulleroid modifiers are synthesized through in situ polymerization, and their mechanical and electric properties are studied. After introduction of 0.001–0.1 wt % fulleroid modifiers, Young’s modulus and the strength of thermoplastic composites increases by 15–20%, practically independently of the amount of filler. This circumstance is due to the fact that the introduction of fulleroid fillers causes selective crystallization of polyamide 6 only in the α form. The introduction of fullerene fillers considerably improves the tribological characteristics of polymer nanocomposites, thereby decreasing the friction coefficient by a factor of 2. The electric properties of nanocomposites are studied also.  相似文献   

11.
Amino units were grafted onto the surface of small particle size alumina by reaction with 3-aminopropyltriethoxysilane. Atactic polystyrene (PS) was sulfonated (1-14 mol% sulfonation) and mixed with both modified and unmodified alumina at filler loadings varying from 30 to 80 wt %. The resulting composites were characterized by differential scanning calorimetry, Fourier transform infra-red spectroscopy, and dynamic mechanical spectroscopy in the glass transition region at a frequency of 1 Hz. Whereas mixtures of unsulfonated PS with either filler showed essentially no change in Tg with filler content, sulfonated PS saw its Tg increase as a function of filler loading at a rate which was greater following modification of the alumina. At a fixed filler loading of 30 wt%, the composite rubbery plateau modulus was found to increase with copolymer sulfonic acid content, while the loss tangent maximum corresponding to the glass transition broadened and decreased. These observations were interpreted as a manifestation of the decrease in polymer mobility brought upon by the formation of noncovalent crosslinks resulting from the proton transfer from the sulfonic acid units on the polymer to hydroxyl and/or amino units at the surface of the filler. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
PA6 composites with Cloisite® 30B (30B), prepared by different procedures, i.e., melt compounding, static annealing and solution blending, have been characterized by X-ray diffraction and microscopic analyses (TEM, SEM, POM) in order to shed more light on the mechanism of nanostructure development. It has been demonstrated that intercalation of the PA6 chains within the 30B galleries takes place very rapidly, in the absence of applied stresses, even when the size of the clay particles is relatively large (tens of microns) and the clay loading is very high (even 50 wt.%). It has also been shown that, if, conversely, the filler content is low (∼10 wt.% or less) and the particles are tiny (e.g., as for polymer/clay mixtures prepared by precipitation from a common solution), intercalation continues, under quiescent conditions, and leads in reasonable times to complete destruction of the silicate platelets stacking order. The composites with higher filler contents display a mixed exfoliated/intercalated morphology, with the intercalated silicate stacks characterized by an interlayer distance of about 3.7 nm. Contrary to statically annealed composites, the melt kneaded ones are characterized by a homogeneous dispersion of the filler particles and a local parallel orientation of the silicate platelets that induces, during polymer crystallization, an orientation of the polymer crystallites parallel to the faces of the compression molded specimens. Experiments carried out using 30B samples previously treated at 250 °C for 4 h under vacuum (30Bdegr) indicate that this treatment, probably due to the collapsed interlayer spaces, lowers the extent of PA6 chains intercalation. Thus, the relevant PA6/30Bdegr composites are characterized by the coexistence of unintercalated clay tactoids/agglomerates and individual silicate layers formed as result of intercalation on the edges of the filler particles.  相似文献   

13.
The effect of the concentration of the dispersed elastic filler on the lower yield stress of matrix composites based on plastic polymers is studied. As the matrix polymers, LDPE-HDPE and LDPE-(medium-density PE) are used. The elastic filler is rubber crumb prepared by roll grinding of worn tires or by deformation grinding of ethylene-propylene-diene rubber. Irrespective of the type of filler particles and their adhesion to the polymer matrix, the lower yield stress σd of the composite is described by the linear law σd = σdm(1 ? V f ), where σdm is the lower yield stress of the polymer matrix and V f is the volume content of the filler. Analysis of the published data shows that this relationship is quite general and describes the effect of rigid inorganic particles on the lower yield stress when adhesion between the filler particles and the matrix is poor.  相似文献   

14.
Poly(epsilon-caprolactone) (PCL) composite samples were prepared by polymerization and direct molding. The starting compound was epsilon-caprolactone monomer liquid combined with cellulose and inorganic fillers, using aluminium triflate as a catalyst at 80 degrees C, for 6 or 24 h. Cylinder-shaped PCL composite samples with a homogeneously dispersed cellulose filler were prepared with (-)M(n) = 4 600 ((-)M(w)/(-)M(n) = 2.9). The mechanical properties of the PCL composite samples were studied using compression test methods. The strength of a PCL composite with 50 wt.-% cellulose filler (10.8 MPa) was found to be lower than the PCL sample without fillers (19.2 MPa). The biobased content of the PCL composite with 50 wt.-% cellulose filler (51.67%) measured using accelerated mass spectrometry (AMS) was slightly higher than the carbon ratio of cellulose in the starting powder samples (41.3 mol-%). The biobased content of the polymer composite powders by AMS was found not to be affected by the presence of inorganic fillers, such as talc. The rate and extent of biodegradation, caused by Amano Lipase PS, of the PCL composite sample with cellulose filler (40% degradation in 4 d) was the same as that of a PCL sample without the cellulose filler.  相似文献   

15.
Both linear and nonlinear viscoelastic properties of ionic polymer composites reinforced by soy protein isolate (SPI) were studied. Viscoelastic properties were related to the aggregate structure of fillers. The aggregate structure of SPI is consisted of submicron size of globule protein particles that form an open aggregate structure. SPI and carbon black (CB) aggregates characterized by scanning electron microscope and particle size analyzer indicate that CB aggregates have a smaller primary particle and aggregate size than SPI aggregates, but the SPI composites have a slightly greater elastic modulus in the linear viscoelastic region than the CB composites. The composite containing 3–40 wt % of SPI has a transition in the shear elastic modulus between 6 and 8 vol % filler, indicating a percolation threshold. CB composites also showed a modulus transition at <6 vol %. The change of fractional free volume with filler concentration as estimated from WLF fit of frequency shift factor also supports the existence of a percolation threshold. Nonlinear viscoelastic properties of filler, matrix, and composites suggested that the filler‐immobilized rubber network generated a G′ maximum in the modulus‐strain curves and the SPI formed a stronger filler network than the CB in these composites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3503–3518, 2005  相似文献   

16.
A thick film of aniline-formaldehyde copolymer and PMMA is synthesized via dispersion of aniline-formaldehyde copolymer powder as filler particles in PMMA with two different concentrations. Variation of the complex elastic modulus and mechanical loss factor (tanδ) with temperature is studied. It is observed that the complex elastic modulus decreases with temperature owing to thermal expansion of films. On the other hand, tanδ increases up to a characteristic temperature beyond which it shows a decreasing trend toward melting. Transition temperature T g of sample S1 (pure PMMA) is found to be 80°C. In sample S2 (1 wt % aniline formaldehyde copolymer), the peak of tanδ at a lower temperature (66°C) corresponds to glass transition temperature T g of the PMMA matrix, while the peak of tanδ at a higher temperature (107.8°C) corresponds to T g of a polymer chain restricted by filler particles of aniline-formaldehyde copolymer. A further increase (10 wt % aniline-formaldehyde copolymer) in the concentration of filler particles of aniline-formaldehyde copolymer results in a more compact structure and a shift of T g to a higher temperature, 122.2°C. This shift in the glass transition temperature of thick films of aniline-formaldehyde copolymer and PMMA is dependent upon the concentration of filler particles in the sample.  相似文献   

17.

Determination of filler content by thermogravimetric (TG) analysis is commonly utilized to investigate the effectiveness of processing methods for composite materials and to quantify the dispersion of filler within the matrix. However, the existing analysis method is not capable of accurately predicting the filler content for natural fiber composites for the case where thermal degradation of the filler and matrix occurs within similar temperature ranges. In the present study, the authors have proposed a generic equation for the determination of filler content which can be utilized for any given range of thermal degradation temperatures in natural filler polymer composites. Oil palm shell unsaturated polyester composites were selected to verify the proposed equation using the TG test with the results indicating good agreement between the estimated and experimental filler contents with a maximum error on the order of 10 %. The suggested technique provides a simple, yet generic, approach to determining the filler content of green or lignocellulose-based polymer composites by TG analysis.

  相似文献   

18.
Crystallization in a series of variable crosslink density poly(dimethyl‐diphenyl)siloxanes random block copolymers reinforced through a mixture of precipitated and fumed silica fillers has been studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), nuclear magnetic resonance (NMR), and X‐ray diffraction (XRD). The silicone composite studied was composed of 94.6 mol % dimethoylsiloxane, 5.1 mol % diphenylsiloxane, and 0.3 mol % methyl‐vinyl siloxane (which formed crosslinking after peroxide cure). The polymer was filled with a mixture of 21.6 wt % fumed silica and 4.0 wt % precipitated silica previously treated with 6.8 wt % ethoxy‐end‐blocked siloxane processing aid. Molecular weight between crosslinks and filler–polymer interaction strength were modified by exposure to γ‐irradiation in either air or in vacuo. Isothermal DMA experiments illustrated that crystallization at ?85 °C occurred over a 1.8 hour period in silica‐filled systems and 2.2–2.6 hours in unfilled systems. The crystallization kinetics for irradiated samples were found to be dependent on crosslink density. Irradiation in vacuo resulted in faster overall crystallization rates compared to air irradiation for the same crosslink density, likely due to a reduction in the interaction between the polymer chains and the silica filler surface for samples irradiated in air. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1898–1906, 2006  相似文献   

19.
Effect of fumed silica dispersion on poly(vinylidene fluoride-co-hexafluoropropylene)-based magnesium ion-conducting gel polymer electrolyte has been studied using various physical and electrochemical techniques. The composite gel electrolytes are free-standing and flexible films with enough mechanical strength. The optimized composition with 3 wt.% filler offers a maximum ionic conductivity of ∼1.1 × 10−2 S cm−1 at ∼25 °C with good thermal and electrochemical stabilities. The Mg2+ ion conduction in the gel nanocomposite film is confirmed from the cyclic voltammetry, impedance spectroscopy, and transport number measurements. The space-charge layers formed between filler particles and gel electrolyte are responsible for the enhancement in ionic conductivity. The applicability of the gel nanocomposite to a rechargeable battery is examined by fabricating a prototype cell consisting of Mg [or Mg-multiwalled carbon nanotube (MWCNT) composite] and MoO3 as negative and positive electrodes, respectively. The discharge capacity and the rechargeability of the cell have been improved when Mg metal is substituted by Mg-MWCNT composite. The discharge capacity of the optimized cell has found to be ∼175 mAh g−1 of MoO3 for an initial ten charge–discharge cycles.  相似文献   

20.
The conditions of synthesis of a composite material in the system consisting of an epoxy-anhydride polymeric matrix and an analcime-containing rock were studied. Addition of the filler allows the service characteristics to be improved by 20–25%. Samples with a low content of analcime-containing rock (up to 1 wt %) exhibit the best service characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号