首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinduced electron transfer is a widely applied method to convert photon energy into a useful (electro)chemical potential, both in nature and in artificial devices. There is a continuing effort to develop molecular systems in which the charge-transfer state, populated by photoinduced electron transfer, survives sufficiently long to tap the energy stored in it. In general this has been found to require the construction of rather complex molecular systems, but more recently a few approaches have been reported that allow the use of much more simple and relatively small electron donor-acceptor dyads for this purpose. The most successful examples of such systems seem to be those that apply "electron spin control" to slow down the spontaneous decay of the charge-transfer state, and these are reviewed in this minireview, with a discussion of the underlying principles and a critical evaluation of some of the claims made with regard to using a pronounced "inverted-region effect" as an alternative method to prolong the lifetime of charge-transfer states.  相似文献   

2.
Naproxen [(+)-(S)- or (−)-(R)-2-(6-methoxynaphthalen-2-yl)propanoic acid, NPX] is a photoactive naphthalene derivative, widely prescribed as nonsteroidal anti-inflammatory drug. A variety of NPX-derived dyads have been synthesized, and their photobehavior has been investigated. In addition to the NPX unit, these dyads contain different types of photo- and/or electroactive moieties, such as naphthalenes (NAP), diaryl ketones (KPF), tertiary amines (PYR), oxetanes (OXT) or thymidine (THY). The excited state intramolecular interactions occurring in the dyads have been examined by both steady-state and time-resolved techniques. As a general observation, dynamic quenching of the NPX singlet-excited state is observed, as indicated by the reduced lifetimes in comparison to the isolated NPX chromophore. This is the result of energy transfer (NPX–NAP, NPX–KPF), electron transfer (NPX–PYR, NPX–OXT), excimer (NPX–NPX) or exciplex (NPX–NAP, NPX–KPF) formation, radiationless decay (NPX–THY), and/or chemical reaction (NPX–OXT, NPX–THY). Thus, the discussed dyads constitute interesting case studies for the photophysical behavior of naproxen in various mechanistic scenarios. For the dyads synthesized as diastereomeric pairs, a significant stereodifferentiation in the photophysical/photochemical properties is observed. Due to the delicate balance between the competing excited state deactivation pathways and the multiple signaling possibilities, these dyads can also be used as probes for the study of specific microenvironments of biological interest.  相似文献   

3.
Two new ferrocenylsubphthalocyanine dyads with ferrocenylmethoxide (2) and ferrocenecarboxylate (3) substituents directly attached to the subphthalocyanine ligand via the axial position have been prepared and characterized using NMR, UV-vis, and magnetic circular dichroism (MCD) spectroscopies as well as X-ray crystallography. The redox properties of the ferrocenyl-containing dyads 2 and 3 were investigated using the cyclic voltammetry (CV) approach and compared to those of the parent subphthalocyanine 1. CV data reveal that the first reversible oxidation is ferrocene-centered, while the second oxidation and the first reduction are localized on the subphthalocyanine ligand. The electronic structures and nature of the optical bands observed in the UV-vis and MCD spectra of all target compounds were investigated by a density functional theory polarized continuum model (DFT-PCM) and time-dependent (TD)DFT-PCM approaches. It has been found that in both dyads the highest occupied molecular orbital (HOMO) to HOMO-2 are ferrocene-centered molecular orbitals, while HOMO-3 as well as lowest unoccupied molecular orbital (LUMO) and LUMO+1 are localized on the subphthalocyanine ligand. TDDFT-PCM data on complexes 1-3 are consistent with the experimental observations, which indicate the dominance of π-π* transitions in the UV-vis spectra of 1-3. The excited-state dynamics of the dyads 2 and 3 were investigated using time-correlated single photon counting, which indicates that fluorescence quenching is more efficient in dyad 3 compared to dyad 2. These fluorescence lifetime measurements were interpreted on the basis of DFT-PCM calculations.  相似文献   

4.
Photoinduced electron transfer (PET) processes of 1,8-naphthalimide-linker-phenothiazine (NI-L-PTZ) dyads have been investigated using the nanosecond- and picosecond-transient absorption measurements. Two kinds of linker were introduced, i.e., polymethylene-linked dyad (NI-C8-PTZ and NI-C11-PTZ) and a poly(ethyl ether)-linked one (NI-O-PTZ). The 355 nm pulsed laser excitation of NI-C8-PTZ, NI-C11-PTZ, and NI-O-PTZ in acetonitrile produced NI radical anion (NI*-) and PTZ radical cation (PTZ*+) with the absorption bands around 420 and 520 nm, respectively, through charge transfer from PTZ to NI in the singlet excited state (NI(S1)) as well as in the triplet excited states (NI(T1)) in acetonitrile. On the other hand, the charge transfer process occurred only from NI(S1) in nonpolar solvents. The rates of charge transfer and charge recombination processes largely depended on the solvent polarity and they are affected by the length of linkers and electronic coupling through polyether linker. The PET mechanism is discussed in terms of the free energy change for the charge transfer.  相似文献   

5.
Intramolecular photoinduced electron transfer (PET) processes occurring in dyads with a free base porphyrin-tetraazaanthracene donor (P) and either a tetracyanonaphthoquinidodimethane (TCQ) or benzoquinone (BQ) acceptor linked by a rigid six σ-bond polynorbornane bridge ([6]) have been investigated. For P[6]BQ, PET in the polar solvent benzonitrile (s = 25.9) occurs with a rate constant (kPET) of 1.6 × 108 s−1 but is not evident in solvents less polar than tetrahydrofuran (s = 7.52). For P[6]TCQ, highly efficient forward PET occurs in both polar and non-polar solvents (kPET > 2 × 1010 s−1). For P[6]TCQ the lifetime of the resulting charge-separated state decreases markedly with increasing solvent polarity. The results are discussed in the context of the likely mechanisms for electronic coupling and current theories for PET processes in such linked molecular systems.  相似文献   

6.
Control over the interchromophore separation, their angular relationship, and the spatial overlap of their electronic clouds in several ZnP-C(60) dyads (ZnP=zinc porphyrin) is used to modulate the rates of intramolecular electron transfer. For the first time, a detailed analysis of the charge transfer absorption and emission spectra, time-dependent spectroscopic measurements, and molecular dynamics simulations prove quantitatively that the same two moieties can produce widely different electron-transfer regimes. This investigation also shows that the combination of ZnP and C(60) consistently produces charge recombination in the inverted Marcus region, with reorganization energies that are remarkably low, regardless of the solvent polarity. The time constants of electron transfer range from the mus to the ps regime, the electronic couplings from a few tens to several hundreds of cm(-1), and the reorganization energies remain below 0.54 eV and can be as low as 0.16 eV.  相似文献   

7.
A series of electron donor-acceptor (DA) dyads, composed of a porphyrin donor and a fullerene acceptor covalently linked with two molecular chains, were used to fabricate solid molecular films with the Langmuir-Blodgett (LB) technique. By means of the LB technique, the DA molecules can be oriented perpendicular to the plane of the substrate. In DHD6ee and its zinc derivative hydrophilic groups are attached to the phenyl moieties in the porphyrin end of the molecule; while in the other three dyads, TBD6a, TBD6hp, and TBD4hp, the hydrophilic groups are in the fullerene end of the molecule. This makes it possible to alternate the orientation of the molecules in two opposite directions with respect to the air-water interface and to fabricate molecular assemblies in which the direction of the primary photoinduced vectorial electron transfer can be controlled both by the deposition direction of the LB monolayer and by the selection of the used DA molecule. This was proved by the time-resolved Maxwell displacement charge measurements. The spectroscopic properties of the DA films were studied with the steady-state absorption and fluorescence methods. In addition, the time correlated single photon counting technique was used to determine the fluorescence properties of the dyad films.  相似文献   

8.
Symmetry properties of CT excited states of some weak donor-acceptor complexes are discussed in the context of vibronic coupling with intermolecular vibrations. The results are applied to the analysis of electroabsorption spectra of anthracene-PMDA.  相似文献   

9.
The choice of appropriate electron donors (D) and acceptors (A) allows for the first time the simultaneous observation of Mulliken charge-transfer states, [D,A], that can coexist in reversible equilibrium with electron-transfer states, {D+*,A-*}, for various diamagnetic organic redox dyads. The theoretical analysis based on the (two-state) Mulliken-Hush analysis of the intervalence optical transition, together with the spectral identification of the transient ion-radical pairs of D+* and A-*, leads to the construction of the unusual potential-energy surface consisting of a single minimum without any reorganizational barrier for electron-transfer cross-exchanges with driving forces close to the isergonic limit. The mechanistic implications of this direct demonstration of the facile charge-transfer/electron-transfer interchange are discussed.  相似文献   

10.
The photoinduced substitution reactions of halogenated alkanes (1-haloadamantanes, 1-haloronorbornanes, menthyl chloride) with a homologous series of amines or alcohols (methylamine, 2-methyl-2-aminopropane, methanol, or 2-methyl-2-propanol) to form the corresponding alkane-substituted amines or ethers and HCl were investigated. The geometry of the bridgehead carbons made S(N)2 reactions impossible. Nonpolar reaction conditions were employed which made classical and nonclassical carbocation S(N)1 reaction pathways unlikely. The reaction rates were measured. Trapping experiments indicated that free radical reactions were uninvolved in the substitution product formation. A novel, photoinduced electron-transfer reaction mechanism involving a charge-transfer intermediate is proposed to explain the observed production of secondary amines and ethers. The excitation wavelength dependence (action spectrum) was measured and found to be comparable to the ultraviolet absorption spectra of the charge-transfer complexes. The stereochemical implications of the reaction mechanism were investigated. The formation of the methyl ether of (1R,2S,5R)-menthol was the only organic reaction product observed in the photoreaction between (1R,2S,5R)-menthyl chloride and methanol.  相似文献   

11.
Two porphyrin-fullerene dyads were synthesized to form self-assembled monolayers (SAMs) on indium-tin oxide (ITO) electrode, with either ITO-porphyrin-fullerene or ITO-fullerene-porphyrin orientations. The dyads contain two linkers for connecting the porphyrin and fullerene moieties and enforcing them essentially to similar geometries of the donor-acceptor pair, and two linkers to ensure the attachment of the dyads to the ITO surface with two desired opposite orientations. The transient photovoltage responses (Maxwell displacement charge) were measured for the dyad films covered by insulating LB films, thus ensuring that the dyads interact only with the ITO electrode. The direction of the electron transfer was from the photoexcited dyad to ITO independent of the dyad orientation. The response amplitude for the ITO-fullerene-porphyrin structure, where the primary intramolecular electron-transfer direction coincides with the direction of the final electron transfer from the dyad to ITO, was 25 times stronger than that for the opposite ITO-porphyrin-fullerene orientation of the dyad. Static photocurrent measurements in a liquid electrochemical cell, however, show only a minor orientation effect, indicating that the photocurrent generation is controlled by the processes at the SAM-liquid interface.  相似文献   

12.
Photoinduced electron transfer (PET) between alpha-cyclodextrin-appended pyrene (PYCD) and a few acceptor molecules was studied in aqueous solutions. The pyrene moiety in PYCD is located above the narrower rim of the alpha-CD and is fully exposed to water. The acceptors are monocyclic organic molecules and, upon dissolution in water in the presence of PYCD, a fraction of the donor-acceptor systems is present as supramolecular dyads and the remaining fraction as free molecules. Free-energy-dependence studies showed that electron transfer in the supramolecular dyads follows the Marcus equation. The donor-acceptor coupling and the reorganization energy were determined from fits of the data to the Marcus equation. The electronic coupling was found to be similar to those reported for hydrogen-bonded systems. It appears that the actual lambdaout values are somewhat lower than values calculated with the continuum model. The experimental design has also allowed, for the first time, a visual demonstration of the inverted region on the basis of the raw fluorescence lifetime data.  相似文献   

13.
An Al-cytosine association complex has been generated via laser ablation of a mixture of aluminum and cytosine powders that were pressed into a rod form. The ionization energy of the complex is found to be 5.16 +/- 0.01 eV. The photoionization efficiency spectrum of Al-cytosine has also been collected. DFT calculations indicate that binding of Al to cytosine manifests a significant weakening of the N-H bond, predicted to have a strength of 1.5 eV in the complex, and a significant stabilization of the oxo tautomeric form relative to the hydroxy forms. The predicted ionization energy of 5.2 eV agrees well with the experimental value. The threshold for dehydrogenation/ionization of Al-cytosine, forming (Al-cytosine-H)+, is found to occur at photoexcitation energies between 11.4 and 12.8 eV. This is a two-photon process that is proposed to occur via photoinduced electron transfer from Al to an antibonding (sigma) orbital localized on N-H. In the context of this mechanism, this work constitutes the first time charge transfer between a metal and DNA base has been photoinitiated in the gas phase.  相似文献   

14.
A simple microscopic model is proposed to described the transition rates to, from and within the manifold of charge-transfer states. The results suggest possible reasons for the existense of long-lived CT states in molecular crystals.  相似文献   

15.
16.
Time-resolved and product studies on the synthesized dyads 1 and 2 have provided evidence that the benzophenone-to-thymine orientation strongly influences intramolecular photophysical and photochemical processes. The prevailing reaction mechanism has been established as a Paterno-Büchi cycloaddition to give oxetanes 3-6; however, the ability of benzophenone to achieve a formal hydrogen abstraction from the methyl group of thymidine has also been evidenced by the formation of photoproducts 7 and 8. These processes have been observed only in the case of the cisoid dyad 1. Adiabatic photochemical cycloreversion of the oxetane ring is achieved upon direct photolysis to give the starting dyad 1 in its excited triplet state. The photobiological implications of the above results are discussed with respect to benzophenone-photosensitized damage of thymidine.  相似文献   

17.
18.
The first example of covalently linked free-base corrole-fullerene dyads is reported. In the newly synthesized dyads, the free-energy calculations performed by employing the redox and singlet excited-state energy in both polar and nonpolar solvents suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity. Accordingly, steady-state and time-resolved emission studies revealed efficient fluorescence quenching of the corrole entity in the dyads. Further studies involving femtosecond laser flash photolysis and nanosecond transient absorption studies confirmed electron transfer to be the quenching mechanism, in which the electron-transfer product, the fullerene anion radical, was able to be spectrally characterized. The rate of charge separation, kCS, was found to be on the order of 10(10)-10(11) s(-1), suggesting an efficient photoinduced electron-transfer process. Interestingly, the rate of charge recombination, kCR, was slower by 5 orders of magnitude in nonpolar solvents, cyclohexane and toluene, resulting in a radical ion-pair lasting for several microseconds. Careful analysis of the kinetic and thermodynamic data using the Marcus approach revealed that this novel feature is due to appropriately positioning the energy level of the charge-separated state below the triplet states of either of the donor and acceptor entities in both polar and nonpolar solvents, a feature that was not evident in donor-acceptor dyads constructed using symmetric tetrapyrroles as electron donors.  相似文献   

19.
Pacman-type face-to-face zinc-porphyrin-fullerene dyads have been newly synthesized and studied. Owing to the close proximity of the donor and acceptor entities, strong pi-pi intramolecular interactions between the porphyrin and fullerene entities resulted in modulating the spectral and electrochemical properties of the dyads. New absorption and emission bands that correspond to the charge-transfer interactions were observed in the near-IR region. Time-resolved transient absorption studies revealed efficient photoinduced electron transfer from the singlet excited porphyrin to the fullerene entity. The rate constants for photoinduced electron transfer are analyzed in terms of the Marcus theory of electron transfer, which afforded a large electron coupling matrix element (V=140 cm(-1)) for the face-to-face dyads. As a consequence of the large charge-recombination driving force in the Marcus inverted region, a relatively long lifetime of the charge-separated state has been achieved.  相似文献   

20.
The ENDOR spectrum of localized triplet states (X-traps) in napthalene-tetracyanobenzene crystals at 4.2 J has been analyzed. From the symmetry of the spin density distribution on the donor and acceptor, it is concluded that the chargetransfer state is distributed over one donor and two acceptors. Between 130 and 300 K, the ESR spectrum or mobile triplet excitons is measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号