首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymerization of methyl methacrylate, methyl acrylate, butyl methacrylate, and butyl acrylate in turn was performed in the modified microemulsion polymerization process, i.e., continuous addition of monomer to a preemulsified system. It was found that the particle size of the copolymer microlatex did not change distinctly with the monomer composition. The estimation of emulsifier coverage on the microlatex particles indicated that the process switched from a traditional microemulsion to a normal seeded emulsion polymerization very soon after monomer dropping began. Therefore, a longer dropping time is needed to produce a microlatex with narrow dispersed particle size. Besides, in the modified microemulsion polymerization less emulsifier is needed to produce a stable microlatex. This behavior is related to the mechanism of normal seeded emulsion polymerization during monomer dropping.  相似文献   

2.
The principal subject discussed in the current paper is the radical polymerization of styrene in the three- and four component microemulsions stabilized by a cationic emulsifier. Polymerization in the o/w microemulsion is a new polymerization technique which allows to prepare the polymer latexes with the very high particle interface area and narrow particle size distribution. Polymers formed are very large with a very broad molecular weight distribution. In emulsion and microemulsion polymerizations, the reaction takes place in a large number of isolated loci dispersed in the continuous aqueous phase. However, in spite of the similarities between emulsion and microemulsion polymerization, there are large differences caused by the much larger amount of emulsifier in the latter process. In the emulsion polymerization there are three rate intervals. In the microemulsion polymerization only two reaction rate intervals are commonly detected: first, the polymerization rate increases rapidly with the reaction time and then decreases steadily. Essential features of microemulsion polymerization are as follows: (1) polymerization proceeds under non-stationary state conditions; (2) size and particle concentration increases throughout the course of polymerization; (3) chain-transfer to monomer/exit of transferred monomeric radical/radical re-entry events are operative; and (4) molecular weight is independent of conversion and distribution of resulting polymer is very broad. The number of microdroplets or monomer-starved micelles at higher conversion is high and they persist throughout the reaction. The high emulsifier/water ratio ensures that the emulsifier is undissociated and can penetrate into the microdroplets. The presence of a large amount of emulsifier strongly influences the reaction kinetics and the particle nucleation. The mixed mode particle nucleation is assumed to govern the polymerization process. At low emulsifier concentration the micellar nucleation is dominant while at a high emulsifier concentration the interaction-like homogeneous nucleation is operative. Furthermore, the paper is focused on the initiation and nucleation mechanisms, location of initiation locus, and growth and deactivation of latex particles. Furthermore, the relationship between kinetic and molecular weight parameters of the microemulsion polymerization process and colloidal (water/particle interface) parameters is discussed. In particular, we follow the effect of initiator and emulsifier type and concentration on the polymerization process. Besides, the effects of monomer concentration and additives are also evaluated.  相似文献   

3.
在采用阳离子型双子(gemini)表面活性剂作为乳化剂,不使用任何助乳化剂的条件下,通过改进微乳液聚合工艺制备了窄分布粒径可控的阳离子型聚苯乙烯(PS)纳米乳液。 改进微乳液聚合的主要特点是:大部分苯乙烯以预乳液的形式恒速滴入引发聚合的微乳液中,使用具有高乳化性能的gemini表面活性剂作为乳化剂能明显降低乳胶粒粒径。 实验结果表明,少量阳离子单体三甲基烯丙基氯化铵作为共聚单体能够明显减小Z均粒径、降低粒度分布,乳化剂用量、引发剂用量和反应温度均能影响制备乳胶粒的粒径及其粒度分布。 乳化剂和引发剂用量分别为苯乙烯质量的5%~10%和1.0%~1.5%、反应温度为70~75 ℃时,能够制备粒径小分布窄的阳离子型聚苯乙烯纳米粒子。 Z均粒径与苯乙烯质量之间的线性关系表明,Z均粒径可以通过苯乙烯用量来控制。 不同聚合工艺下制备的聚合物粒度分布曲线表明,改进微乳液聚合工艺(半连续预乳化工艺)在制备窄分布的聚合物纳米粒子方面具有很强的优越性。  相似文献   

4.
 The polymerization of styrene-in-water and methylmeth-acrylate-in-water microemulsions stabilized by nonionic surfactants was investigated using different initiation techniques. Thermally induced initiation was carried out using potassium persulfate (water soluble) and azobisiso-butyronitrile (AIBN) (oil soluble) at 60° and 50°C, respectively. When the monomer concentration was kept below a certain limit, the particle size of the nanolatex was similar to the droplet size of the microemulsion precursor. At higher monomer concentrations, the latex produced was significantly larger than the microemulsion droplets, as a result of the possible coalescence of the microemulsion droplets during polymerization. By using chemically induced polymerization (hydrogen peroxide+ascorbic acid) at temperatures below the cloud point temperature of the microemulsion or by photochemically induced initiation at room temperature, it was possible to obtain nanolatex particles with similar size to the droplets up to 10% monomer content. In all cases, the particle size was determined using photon correlation spectroscopy (PCS). Electron micrographs of the microlatex particles were taken and these confirmed the measurements obtained by PCS. The molecular weight of the polymers produced was determined by gel permeation chromatography. The average number of polymer molecules per particle was calculated. It was shown in some cases that the nanolatex contained one polymer chain per particle. A mechanism was suggested for polymerization and particle growth. Received: 29 May 1997 Accepted: 28 May 1998  相似文献   

5.
Summary: In this paper, the microemulsion polymerization of methyl methylacrylate (MMA) was carried out with single and gemini ionic liquids as emulsifier including 1-N-tetradecyl-3-methylimidazolium bromide (C14MIM · Br) and 1, 4-Bis (3-tetradecylimidazolium-1-yl) butane bromide (C14MIM-4-C14MIM · 2Br) respectively, and they were all have typical microemulsion polymerization characters of MMA, but the process of polymerization directly depends on the structure of the imidazolium ionic liquids. The structure and concentration of ionic liquids have effects on the resulted latex particle sizes of PMMA, and much smaller size latexes of PMMA could be gotten with C14MIM · Br as emulsifier than C14MIM-4-C14MIM · 2Br in polymerization. On the other hand, the structure of emulsifier has the effects on the molecular weight (MW) and molecular weight distribution (MWD) of PMMA, so the resulting PMMA prepared from microemulsion polymerization with C14MIM · Br as emulsifier has higher MW but narrower MWD than that of PMMA with the same dosage of C14MIM-4-C14MIM · 2Br as emulsifier.  相似文献   

6.
A mathematical model for inverse microemulsion polymerization has been developed. The model has been used to fit experimental results of the effect of initiator concentration, light intensity, emulsifier concentration, and dispersed phase weight fraction on the monomer conversion evolution, particle size, and polymer molecular weight in the inverse microemulsion polymerization of 2-methacryloyl oxyethyl trimethyl ammonium chloride (MADQUAT) initiated by UV light in the presence of AIBN. A good fitting of the experimental data was achieved. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2167–2178, 1999  相似文献   

7.
Reverse atom transfer radical polymerization of styrene was carried out in a microemulsion system with 2,2′-azobisisobutyronitrile as initiator, CuBr2 and 2′-bipyridine as catalyst/ligand complex, sodium dodecyl sulfate as emulsifier and 1-hexanol as co-emulsifier. The chosen system showed poor control over molecular weight characteristics, though the low values of polydispersity indexes of the polymer were observed. The particle size was decreased with the increase in the amount of catalyst/ligand complex. Additionally, the nucleation prevailed throughout the polymerization process.  相似文献   

8.
The synthesis of polystyrene nanoparticles through microemulsion polymerization is presented as an undergraduate advanced organic laboratory exercise. The resultant polymers molecular weight and particle size are studied as a function of monomer and initiator concentration. A comparison of cationic vs. anionic surfactants, and their effects on the polymer produced through microemulsion polymerization are also investigated. A direct relationship is observed between molecular weight and monomer concentration. A direct relationship is also found for the particle size of the latex produced. An inverse relationship is observed for molecular weight and particle size as the initiator concentration was raised. Comparison of molecular weight and latex size for cationic and anionic surfactants demonstrates that the anionic surfactant produces both a higher molecular weight and a larger latex size over the entire monomer and initiator concentration ranges.  相似文献   

9.
This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed.  相似文献   

10.
Free radical polymerization of acrylamide was carried out in nonionic microemulsions of water, an isoparaffinic oil, Isopar M and a blend of nonionic emulsifiers: a sorbitan sesquioleate and a polyoxyethylene sorbitol hexaoleate (HLB of the mixture: 9.3). The size and the stability of the latex particles formed after polymerization were studied as a function of monomer, emulsifier and electrolyte concentration. High emulsifier and high monomer contents favor obtaining high molecular weight polyacrylamides. It is shown that both the number of polymer chains contained in each latex particle and the size of the particles are essentially controlled by the acrylamide/emulsifier weight ratio.  相似文献   

11.
The synthesis of nanocomposites via emulsion polymerization was investigated using methyl methacrylate (MMA) monomer, 10 wt % montmorillonite (MMT) clay, and a zwitterionic surfactant octadecyl dimethyl betaine (C18DMB). The particle size of the diluted polymer emulsion was about 550 nm, as determined by light scattering, while the sample without clay had a diameter of about 350 nm. The increase in the droplet size suggests that clay was present in the emulsion droplets. X-ray diffraction indicated no peak in the nanocomposites. Transmission electron microscopy showed that emulsion polymerization of MMA in the presence of C18DMB and MMT formed partially exfoliated nanocomposites. Differential scanning calorimetry showed an increase of 18 degrees C in the glass transition temperature (Tg) of the nanocomposites. A dynamic mechanical thermal analyzer also verified a similar Tg increase, 16 degrees C, for the partially exfoliated nanocomposites over poly(methyl methacrylate) (PMMA). Thermogravimetric analysis indicated a 37 degrees C increase in the decomposition temperature for a 20 wt % loss. A PMMA nanocomposite with 10 wt % C18DMB-MMT was also synthesized via in situ polymerization. This nanocomposite was intercalated and had a Tg 10 degrees lower than the emulsion nanocomposite. The storage modulus of the partially exfoliated emulsion nanocomposite was superior to the intercalated structure at higher temperatures and to the pure polymer. The rubbery plateau modulus was over 30 times higher for the emulsion product versus pure PMMA. The emulsion technique produced nanocomposites of the highest molecular weight with a bimodal distribution. This reinstates that exfoliated structures have enhanced thermal and mechanical properties over intercalated hybrids.  相似文献   

12.
复合微乳液聚合制备P(MMA-UA)纳米乳胶粒子的研究   总被引:14,自引:0,他引:14  
将聚氨酯预聚体可聚合乳化剂 (APUA)和甲基丙烯酸甲酯 (MMA)的复合微乳液体系 ,分别用水溶性过硫酸钾 (K2 S2 O8)和油溶性偶氮二异丁腈 (AIBN)作引发剂 ,进行微乳液聚合研究 ,制备了P(MMA UA)复合纳米乳胶粒子 .研究了APUA用量、聚合温度对聚合动力学的影响 ;用透射电子显微镜 (TEM)观察了不同乳化剂浓度及引发剂体系对胶粒形态、大小及分布的影响 .结果表明 ,用可聚合乳化剂APUA可制得稳定性很好的P(MMA UA)纳米级核 壳型乳胶粒子 ,乳胶粒径在 5 0nm左右 .随着乳化剂用量增加 ,粒子变小 ;不同类型的引发剂对胶乳的性质有较大影响 ,以APUA为乳化剂 ,K2 S2 O8为引发剂 ,在聚合反应过程中或在聚合反应后的放置中 ,会出现P(MMA UA)的纳米水凝胶 (Nanogel)现象 .  相似文献   

13.
The synthesis of polyacrylamide nanoparticles by semi-continuous inverse heterophase polymerization as a function of feeding rate of monomer aqueous solution is reported here. In this process, a concentrated acrylamide aqueous solution is dosed semi-continuously at various rates over an AOT-toluene solution containing the initiator. Our results indicate that particle size and the viscosimetric molar masses diminish as the dosing rate is slowed down and that smaller particles, as well as lower molar masses, are obtained compared to those produced by batch and semi-continuous microemulsion polymerizations, employing the same concentration of surfactant. Moreover, higher polymer/surfactant ratios are higher compared to those obtained in batch microemulsion polymerization and similar or slightly higher than that in semi-continuous microemulsion polymerization.  相似文献   

14.
High polymer/surfactant weight ratios (up to about 15:1) of polystyrene microlatexes have been successfully produced by microemulsion polymerization using a small amount of polymerizable surfactant, ω-methoxypoly(ethylene oxide)40 undecyl α-methacrylate macromonomer (PEO-R-MA-40), and cetyltrimethylammonium bromide (CTAB). After generating “seeding particles” in a ternary microemulsion containing only 0.2 wt% CTAB and 0.1 wt% styrene, the additional styrene containing less than 1 wt% PEO-R-MA-40 was added dropwise to the polymerized microemulsion for a period of about 4 h at room temperature. PEO-R-MA-40 copolymerized readily with styrene. The stable microlatexes were bluish-transparent at a lower polymer content and became bluish-opaque at a higher polymer content. Nearly monodisperse latex particles with diameters ranging from 50 to 80 nm and their molar masses ranging from 0.6 to 1.6 × 106 g/mol could be obtained by varying the polymerization conditions. The dependence of the number of particles per milliliter of microlatex, the latex particle size and the copolymer molar mass on the polymerization time is discussed in conjunction with the effect of the macromonomer concentration. Received: 25 October/2000 Accepted: 2 February 2001  相似文献   

15.
Reversible addition–fragmentation chain transfer (RAFT) polymerization is a useful technique for the formation of polymers with controlled architectures and molecular weights. However, when used in the polymerization of microemulsions, RAFT agents are only able to control the polymer molecular weight only at high RAFT concentrations. Here, a kinetic model describing RAFT microemulsion polymerizations is derived that predicts the reaction rates, molecular weight polydispersities, and particle size. The model predicts that at low RAFT concentrations, the RAFT agent will be consumed early in the reaction and that this will result in uncontrolled polymerization in particles nucleated late in the reaction. The higher molecular weight polydispersity that is observed in RAFT microemulsion polymerizations is the result of this uncontrolled polymerization. The model also predicts a shift in the conversion at which the maximum reaction rate occurs and a decrease in the particle size with increasing RAFT concentration. Both of these trends are also consistent with those observed experimentally. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6055–6070, 2006  相似文献   

16.
Nanosized hydrogel particles prepared through inverse microemulsion polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, using the combination of an oil soluble emulsifier (SPAN80) with a water soluble emulsifier (TWEEN 80), and precise determination of HLB range related to the formation of stable single phase microemulsions.

The effect of crosslink density, water phase to oil phase ratio, and the hydrophilic-lipophilic balance (HLB) value on polymerization rate, particle size, and swelling ratio were investigated. It found that polymerization rate and particle size are strongly dependent on the water phase to oil phase ratio. Hydrogel samples prepared using oil soluble and water soluble initiators and the results showed that the initiator type had a great influence on monomer conversion and particle size. Effect of pH on equilibrium swelling of hydrogels was studied by dynamic light scattering and hydrogels showed pH-independent swelling behavior in a broad range of pH values. We also reported and discussed the crosslink density distribution in nanogels prepared by inverse microemulsion polymerization.  相似文献   

17.
根据八甲基环四硅氧烷(D_4)在阳离子乳液聚合过程中,聚合物的分子量及数目的变化等特点,提出并证明了D_4在乳液粒子表面进行聚合的机理的假设。  相似文献   

18.
采用两种聚合工艺(种子微乳液聚合法和单体预乳化法)分别合成了室温交联型有机硅改性丙烯酸酯聚合物微胶乳,研完了不同工艺条件对聚合稳定性、乳胶粒径和胶膜的结构性能的影响.  相似文献   

19.
Latex emulsions depend strongly on the polymer composition, and particle size distribution, which in turn, is a function of the preparation of the latex and on the formulation and composition variables. This study reports measurements of particle size and particle size distribution of latex emulsions as function of the reaction time and the type and concentration of emulsifier by using the multiwavelength spectroscopy technique. Results show changes in the particle size of latex emulsions with the reaction time, obtaining larger particles and broader distributions with increasing of Tween 80 ratio. The steric stabilization provides the sole nonionic emulsifier is not enough to protect the polymer particle, causing the flocculation among the interactive particles, resulting in unstable latex. However, latex emulsions prepared with Tween 80 ratio <70 wt.% can stabilize efficiently the nucleated particles, probably due to the effects provided by both, the electrostatic and steric stabilization mechanisms. The same effect is shown in the curves of conversion (%) as a function of reaction time, resulting in slower polymerization rate for Tween 80 ratio >70 wt.%. On the other hand, smaller polymer particles, in all range of emulsifier mixture, have been obtained to higher emulsifier concentration.  相似文献   

20.
Initiation of polymerization in styrene oil-in-water microemulsions by water-soluble potassium persulfate of oil-soluble 2,2′-azobis-(2-methyl butyronitrile) at 70°C gave stable latexes which were bluish and less translucent than the original microemulsions. The effects of initiator concentration, polymerization temperature, and monomer concentration on the kinetics, particle size distributions, and molecular weight distributions were investigated. The kinetics of polymerization were measured by dilatometry. In all cases, the polymerization rate shows only two intervals, which increased to a maximum and then decreased. There was no apparent constant rate period and no gel effect. A longer nucleation period was found for polymerizations initiated by potassium persulfate as compared to 2,2′-azobis-(2-methyl butyronitrile). The small latex particle size (20–30 nm) and high polymer molecular weight (1–2 × 106) implies that each latex particle consists of two or three polystyrene molecules. The maximum polymerization rate and number of particles varied with the 0.47 and 0.40 powers of potassium persulfate concentration, and the 0.39 and 0.38 powers of 2,2′-azobis-(2-methyl butyronitrile) concentration, respectively. This is consistent with the 0.4 power predicted by Smith–Ewart Case 2 kinetics. Microemulsion polymerizations of styrene–toluene mixtures at the same oil-water phase ratio gave lower polymerization rates and lower molecular weights, but the same latex particle size as with styrene alone. A mechanism is proposed, which comprised initiation and polymerization in the microemulsion droplets, by comparing the kinetics of microemulsion polymerization with conventional emulsion and miniemulsion polymerization systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号