首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive residual based a posteriori error estimates of the flux in L 2-norm for a general class of mixed methods for elliptic problems. The estimate is applicable to standard mixed methods such as the Raviart–Thomas–Nedelec and Brezzi–Douglas–Marini elements, as well as stabilized methods such as the Galerkin-Least squares method. The element residual in the estimate employs an elementwise computable postprocessed approximation of the displacement which gives optimal order.  相似文献   

2.
We perform the a posteriori error analysis of residual type of transmission problem with sign changing coefficients. According to Bonnet-BenDhia et al. (2010) [9], if the contrast is large enough, the continuous problem can be transformed into a coercive one. We further show that a similar property holds for the discrete problem for any regular meshes, extending the framework from Bonnet-BenDhia et al. [9]. The reliability and efficiency of the proposed estimator are confirmed by some numerical tests.  相似文献   

3.
The classical a posteriori error estimates are mostly oriented to the use in the finite element hh-methods while the contemporary higher-order hphp-methods usually require new approaches in a posteriori error estimation. These methods hold a very important position among adaptive numerical procedures for solving ordinary as well as partial differential equations arising from various technical applications.  相似文献   

4.
Summary. A posteriori error estimators of residual type are derived for piecewise linear finite element approximations to elliptic obstacle problems. An instrumental ingredient is a new interpolation operator which requires minimal regularity, exhibits optimal approximation properties and preserves positivity. Both upper and lower bounds are proved and their optimality is explored with several examples. Sharp a priori bounds for the a posteriori estimators are given, and extensions of the results to double obstacle problems are briefly discussed. Received June 19, 1998 / Published online December 6, 1999  相似文献   

5.
We show that a posteriori estimators for the obstacle problem are easily obtained from the theory for linear equations. The theory would be even simpler if the Lagrange multiplier does not have a nonconforming contribution as it has in actual finite element computations.  相似文献   

6.
We propose and study a posteriori error estimates for convection-diffusion-reaction problems with inhomogeneous and anisotropic diffusion approximated by weighted interior-penalty discontinuous Galerkin methods. Our twofold objective is to derive estimates without undetermined constants and to analyze carefully the robustness of the estimates in singularly perturbed regimes due to dominant convection or reaction. We first derive locally computable estimates for the error measured in the energy (semi)norm. These estimates are evaluated using -conforming diffusive and convective flux reconstructions, thereby extending the previous work on pure diffusion problems. The resulting estimates are semi-robust in the sense that local lower error bounds can be derived using suitable cutoff functions of the local Péclet and Damköhler numbers. Fully robust estimates are obtained for the error measured in an augmented norm consisting of the energy (semi)norm, a dual norm of the skew-symmetric part of the differential operator, and a suitable contribution of the interelement jumps of the discrete solution. Numerical experiments are presented to illustrate the theoretical results.  相似文献   

7.
This paper presents a robust a posteriori residual error estimator for diffusion-convection-reaction problems with anisotropic diffusion, approximated by a SUPG finite element method on isotropic or anisotropic meshes in Rd, d=2 or 3. The equivalence between the energy norm of the error and the residual error estimator is proved. Numerical tests confirm the theoretical results.  相似文献   

8.
We consider some (anisotropic and piecewise constant) diffusion problems in domains of R2, approximated by a discontinuous Galerkin method with polynomials of any fixed degree. We propose an a posteriori error estimator based on gradient recovery by averaging. It is shown that this estimator gives rise to an upper bound where the constant is one up to some additional terms that guarantee reliability. The lower bound is also established. Moreover these additional terms are negligible when the recovered gradient is superconvergent. The reliability and efficiency of the proposed estimator is confirmed by some numerical tests.  相似文献   

9.
Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.  相似文献   

10.
We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then applying the continuous maximum principle; no geometric mesh constraints are thus required. Numerical experiments illustrate reliability and efficiency properties of the corresponding estimators and investigate the performance of the resulting adaptive algorithms in terms of the polynomial order and quadrature.  相似文献   

11.
Summary. A posteriori error estimators for fully discrete hierarchic modelling on thin domains are derived and are shown to provide computable upper bounds on the discretization error and on the total error. The estimators are shown to be robust and do not degenerate as the thickness of the domain tends to zero. If the discretization part of the error is negligible, the estimator for the modelling error reduces to the one recently obtained for semi-discrete hierarchical modelling by Babuska and Schwab. Received July 25, 1996 / Revised version received July 31, 1997  相似文献   

12.
A posteriori error estimates for mixed FEM in elasticity   总被引:2,自引:0,他引:2  
A residue based reliable and efficient error estimator is established for finite element solutions of mixed boundary value problems in linear, planar elasticity. The proof of the reliability of the estimator is based on Helmholtz type decompositions of the error in the stress variable and a duality argument for the error in the displacements. The efficiency follows from inverse estimates. The constants in both estimates are independent of the Lamé constant , and so locking phenomena for are properly indicated. The analysis justifies a new adaptive algorithm for automatic mesh–refinement. Received July 17, 1997  相似文献   

13.
We present guaranteed and computable both sided error bounds for the discontinuous Galerkin (DG) approximations of elliptic problems. These estimates are derived in the full DG-norm on purely functional grounds by the analysis of the respective differential problem, and thus, are applicable to any qualified DG approximation. Based on the triangle inequality, the underlying approach has the following steps for a given DG approximation: (1) computing a conforming approximation in the energy space using the Oswald interpolation operator, and (2) application of the existing functional a posteriori error estimates to the conforming approximation. Various numerical examples with varying difficulty in computing the error bounds, from simple problems of polynomial-type analytic solution to problems with analytic solution having sharp peaks, or problems with jumps in the coefficients of the partial differential equation operator, are presented which confirm the efficiency and the robustness of the estimates.  相似文献   

14.
This paper presents an a posteriori error analysis for the linear finite element approximation of the Signorini problem in two space dimensions. A posteriori estimations of residual type are defined and upper and lower bounds of the discretization error are obtained. We perform several numerical experiments in order to compare the convergence of the terms in the error estimator with the discretization error.  相似文献   

15.
An adaptive discontinuous finite volume method is developed and analyzed in this paper. We prove that the adaptive procedure achieves guaranteed error reduction in a mesh-dependent energy norm and has a linear convergence rate. Numerical results are also presented to illustrate the theoretical analysis.  相似文献   

16.
Summary. Computable a posteriori error bounds for a large class of nonconforming finite element methods are provided for a model Poisson-problem in two and three space dimensions. Besides a refined residual-based a posteriori error estimate, an averaging estimator is established and an -estimate is included. The a posteriori error estimates are reliable and efficient; the proof of reliability relies on a Helmholtz decomposition. Received March 4, 1997 / Revised version received September 4, 2001 / Published online December 18, 2001  相似文献   

17.
Summary. We derive a posteriori error estimators for convection-diffusion equations with dominant convection. The estimators yield global upper and local lower bounds on the error measured in the energy norm such that the ratio of the upper and lower bounds only depends on the local mesh-Peclet number. The estimators are either based on the evaluation of local residuals or on the solution of discrete local Dirichlet or Neumann problems. Received February 10, 1997 / Revised version received November 4, 1997  相似文献   

18.
In this paper, we present an a posteriori error analysis for mixed finite element approximation of convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates can be used to construct reliable adaptive mixed finite elements for the control problems.  相似文献   

19.
In this work we derive and analyze a posteriori error estimators for low-order nonconforming finite element methods of the linear elasticity problem on both triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement. First, it is shown that equilibrated Neumann data on interelement boundaries are simply given by the local weak residuals of the numerical solution. The first error estimator is then obtained by applying the equilibrated residual method with this set of Neumann data. From this implicit estimator we also derive two explicit error estimators, one of which is similar to the one proposed by Dörfler and Ainsworth (2005) [24] for the Stokes problem. It is established that all these error estimators are reliable and efficient in a robust way with respect to the Lamé constants. The main advantage of our error estimators is that they yield guaranteed, i.e., constant-free upper bounds for the energy-like error (up to higher order terms due to data oscillation) when a good estimate for the inf-sup constant is available, which is confirmed by some numerical results.  相似文献   

20.
A new a posteriori error estimate is derived for the stationary convection–reaction–diffusion equation. In order to estimate the approximation error in the usual energy norm, the underlying bilinear form is decomposed into a computable integral and two other terms which can be estimated from above using elementary tools of functional analysis. Two auxiliary parameter-functions are introduced to construct such a splitting and tune the resulting bound. If these functions are chosen in an optimal way, the exact energy norm of the error is recovered, which proves that the estimate is sharp. The presented methodology is completely independent of the numerical technique used to compute the approximate solution. In particular, it is applicable to approximations which fail to satisfy the Galerkin orthogonality, e.g. due to an inconsistent stabilization, flux limiting, low-order quadrature rules, round-off and iteration errors, etc. Moreover, the only constant that appears in the proposed error estimate is global and stems from the Friedrichs–Poincaré inequality. Numerical experiments illustrate the potential of the proposed error estimation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号