首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flexible and portable trace nitrogen dioxide sensor based on cavity ringdown spectroscopy using an optical fiber-coupled high-finesse cavity was successfully demonstrated. Tailoring the spatial mode matching condition of the core of an optical fiber and high-finesse external cavity allows for effective optical feedback into an antireflection-coated laser diode for stable resonant enhancement of the external cavity. The external cavity, which works as a ringdown cavity, could be remotely located from the light source and receiver section by only a single mode optical fiber. The sensitivity was found to be 1.0×10−7 cm−1 in a compact 1-cm3 ringdown cavity volume.  相似文献   

2.
We present an application of continuous-wave (cw) cavity-enhanced absorption spectroscopy (CEAS) with off-axis alignment geometry of the cavity and with time integration of the cavity output intensity for detection of narrow-band and broadband absorbers using single-mode red diode lasers at λ=687.1 nm and λ=662 nm, respectively. Off-axis cw CEAS was applied to kinetic studies of the nitrate radical using a broadband absorption line at λ=662 nm. A rate constant for the reaction between the nitrate radical and E-but-2-eneof (3.78±0.17)×10-13 cm3 molecule-1 s-1 was measured using a discharge-flow system. A nitrate-radical noise-equivalent (1σ≡ root-mean-square variation of the signal) detection sensitivity of 5.5×109 molecule cm-3 was achieved in a flow tube with a diameter of 4 cm and for a mirror reflectivity of ∼99.9% and a lock-in amplifier time constant of 3 s. In this case, a noise-equivalent fractional absorption per one optical pass of 1.6×10-6 was demonstrated at a detection bandwidth of 1 Hz. A wavelength-modulation technique (modulation frequency of 10 kHz) in conjunction with off-axis cw CEAS has also been used for recording 1f- and 2f-harmonic spectra of the RR(15) absorption of the b1Σg +-X3Σg - (1,0) band of molecular oxygen at =14553.947 cm-1. Noise-equivalent fractional absorptions per one optical pass of 1.35×10-5, 6.9×10-7 and 1.9×10-6 were obtained for direct detection of the time-integrated cavity output intensity, 1f- and 2f-harmonic detection, respectively, with a mirror reflectivity of ∼99.8%, a cavity length of 0.22 m and a detection bandwidth of 1 Hz. Received: 24 June 2002 / Revised version: 12 August 2002 / Published online: 15 November 2002 RID="*" ID="*"Corresponding author. Fax: +44-1865/275410, E-mail: vlk@physchem.ox.ac.uk  相似文献   

3.
A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4–4.5 μm region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal, DFG power levels of 10 μW were generated at approximately 4 μm in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of ∼12 cm-1 and a temperature tuning rate of 1.02 cm-1/°C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described. Received: 23 October 2000 / Revised version: 22 January 2001 / Published online: 27 April 2001  相似文献   

4.
Cavity-enhanced absorption spectroscopy is explained in terms of the transmission function of a rapidly swept interferometer, and the integrated transmission is shown to be proportional to the cavity ringdown time. The technique is demonstrated on the b1Σg +-X3Σg -  (1,0) band in molecular oxygen at 687 nm using a tunable diode laser and a relative-ly high-Q optical cavity (finesse ≈4000). A detection limit of 3×10-8 cm-1 s1/2 is achieved for a 0.8 cm-1 scanning range. Received: 24 June 2002 / Revised version: 5 August 2002 / Published online: 15 November 2002 RID="*" ID="*"Corresponding author. Fax: +44-1865/275410, E-mail: peverall@physchem.ox.ac.uk  相似文献   

5.
Upconversion luminescence in triply ionized praseodymium-doped TeO2–Li2O glass using excitation at ∼590 nm into the 1D2 level from a dye laser pumped with the second harmonic of a pulsed Nd:YAG laser has been reported. The mechanism involved in the upconversion emission observed at ∼480 nm indicates that the most important contribution is energy transfer among praseodymium ions in pairs followed by the dipole–dipole interaction. The rate-equation model for the emission at ∼480 nm that provides direct information to determine the energy-transfer rates containing the pair of states involved in the upconversion process has been explored.  相似文献   

6.
Spectroscopic sensing of gases can be performed with high sensitivity and photometric precision by cavity ringdown (CRD) absorption spectroscopy. Our cavity ringdown spectrometer incorporates continuous-wave (cw) tunable diode lasers, fibre-optic coupling and standard photonics and optical telecommunications components. It comprises a rapidly swept optical cavity in a single-ended optical heterodyne transmitter–receiver configuration, enabling optical absorption of gases to be recorded either as single-frequency scanned spectra or as simultaneous, multi-wavelength tailored spectra. By measuring weak near-infrared rovibrational spectra of carbon dioxide gas (CO2), with high resolution in the vicinity of 1.53 μm, we have realised a noise-limited absorption sensitivity of 2.5×10-9 cm-1 Hz-1/2. Analytical sensitivity limits (both actual and projected) and prospective gas-diagnostic applications are discussed. Our approach to cw-CRD spectroscopy offers high performance in a relatively simple, low-cost, compact instrument that is amenable to chemical analysis of trace gases in medical, agricultural, industrial and environmental situations. Received: 16 May 2002 / Revised version: 3 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +61-2/9850-8313, E-mail: brian.orr@mq.edu.au  相似文献   

7.
We have measured the even isotope structure of the 6p 3P0-9s 3S1 transition in mercury at 246.5 nm using saturated absorption spectroscopy with radiation produced as the sum frequency of a 363.8 nm argon ion laser and an LD700 ring dye laser in ADP. This is the first use of cw sum-frequency mixing in nonlinear laser spectroscopy in the ultraviolet. No previous cw Doppler-free measurements have been reported at wavelenghts below 294.5 nm  相似文献   

8.
The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 μm is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated. Received: 3 April 2002 / Revised version: 3 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-202/994-5873, E-mail: Houston@gwu.edu  相似文献   

9.
Textile blood vessels with a length of 30 cm were coated with amorphous diamond-like carbon (DLC) layers with thicknesses up to 200 nm. The layers were created by pulsed laser deposition in vacuum or argon ambient. The percentage of sp3 carbon was evaluated using X-ray photoelectron spectroscopy, X-ray excited Auger electron spectroscopy and Raman spectroscopy. Depending on the deposition conditions the sp3 content varied from ∼40% to 60%. The adhesion of the DLC layers to the textile vessels was checked. The preliminary biocompatibility results from in vivo tests with sheep are also given.  相似文献   

10.
3 is reported. Using an external cavity diode laser, tunable from 795 to 825 nm, and a cw diode-pumped Nd:YAG ring laser at 1064 nm, we produced narrowband mid-ir laser light between 3.16 and 3.67 μm. This broad tuning range of 440 cm-1 can be critically phase-matched by changing the external crystal angle within a range of only 0.4°. Even for a fixed crystal angle broadband phase-matching over 230 cm-1 was achieved. No realignment was required when tuning the laser over the whole wavelength range, which enabled the use of a compact 36-m multipass cell as gas chamber. The conversion efficiency could be improved by almost a factor of 3 by applying noncollinear instead of collinear phase-matching, resulting in 30 nW of idler power with good beam quality. Spectra of methane were recorded in laboratory air, which demonstrate the rapid and continuous broad tunability at high sensitivity, enabling sub-ppm detection. Finally, wavelength modulation spectroscopy at high resolution was applied as a promising tool for further inproving the performance of this laser spectrometer. Received: 16 March 1998/Revised version: 1 July 1998  相似文献   

11.
建立了一套光腔衰荡原子束吸收光谱测量装置,并对Ba原子的6s6p1P1←6s6s1S0吸收谱线用光腔衰荡光谱方法进行了测量,得到了Ba原子在553.548nm不同温度下的吸收谱线线型.实验结果表明,该装置测量吸收灵敏度达到6×10-7. 关键词: 光腔衰荡 吸收光谱 Ba原子  相似文献   

12.
A new technique of cavity enhanced absorption spectroscopy is described. Molecular absorption spectra are obtained by recording the transmission maxima of the successive TEMoo resonances of a high-finesse optical cavity when a Distributed Feedback Diode Laser is tuned across them. A noisy cavity output is usually observed in such a measurement since the resonances are spectrally narrower than the laser. We show that a folded (V-shaped) cavity can be used to obtain selective optical feedback from the intracavity field which builds up at resonance. This induces laser linewidth reduction and frequency locking. The linewidth narrowing eliminates the noisy cavity output, and allows measuring the maximum mode transmissions accurately. The frequency locking permits the laser to scan stepwise through the successive cavity modes. Frequency tuning is thus tightly optimized for cavity mode injection. Our setup for this technique of Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) includes a 50 cm folded cavity with finesse ∼20 000 (ringdown time ∼20 μs) and allows recording spectra of up to 200 cavity modes (2 cm−1) using 100 ms laser scans. We obtain a noise equivalent absorption coefficient of ∼5×10−10 cm−1 for 1 s averaging over scans, with a dynamic range of four orders of magnitude.  相似文献   

13.
Optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) has been demonstrated by coupling a distributed feedback diode laser to a ring cavity. Frequency-selected light decaying from the ring cavity is retro-reflected, inducing a counter-propagating intra-cavity beam, and providing optical feedback to the laser. At specific laser-to-cavity distances, all cavity mode frequencies return to the diode laser with the same phase, allowing spectra to be accumulated across the range of frequencies of the current-tuned laser. OF-CEAS has been used to measure very weak oxygen isotopologue (16O18O and 16O17O) absorptions in ambient air at wavelengths near 762 nm using the electric-dipole forbidden O2 A-band. A bandwidth reduced minimum detectable absorption coefficient of 2.2×10−9 cm−1 Hz−1/2 is demonstrated.  相似文献   

14.
Development of a continuous-wave tunable fiber laser-based spectrometer for applied spectroscopy is reported. Wide wavelength tunability of an erbium-doped fiber laser (EDFL) was investigated in the near-infrared region of 1543–1601 nm. Continuous mode-hop free fine frequency tuning has been accomplished by temperature tuning in conjunction with mechanical tuning. The overall spectroscopic performance of the EDFL was evaluated in terms of frequency tunability along with its suitability for molecular spectroscopy. High-resolution absorption spectra of acetylene (C2H2) were recorded near 1544 nm with a minimum measurable absorption coefficient of about 3.5×10-7 cm-1/Hz1/2 for direct absorption spectroscopy associated with a 100-m long multipass cell. Detections of C2H2 at different concentration levels were performed as well with high dynamic detection range varying from 100% purity to sub ppmv using cavity ring down spectroscopy. A 3σ-detection-limited minimum detectable concentration (MDC) of 400 ppbv has been obtained by using the transition line Pe(22) of the ν135 1g)-ν5 1u) hot band near 1543.92 nm with a detection bandwidth of 2.3 Hz. This corresponds to a minimum detectable absorption coefficient of 6.6×10-11 cm-1/Hz1/2. The sensitivity limit could be further improved by almost one order of magnitude (down to ∼60 ppbv) by use of the Pe(27) line of the ν13u +)-0(Σg +)combination band near 1543.68 nm. PACS 42.55.Wd; 42.62.Fi; 07.57.Ty; 07.88.+y  相似文献   

15.
Local crystalline formation in erbium doped oxyfluoride glass has been obtained under a cw Argon laser irradiation up to 1.8 W pumping power. By exciting at 514 nm, the emission from 800 nm and 850 nm corresponding to the 4S3/2(2H11/2)→4I13/2 electronic transitions have been analyzed both inside and outside the irradiated area. The changes in the emission spectra indicate that the high power Ar laser irradiation has resulted in a localized desvitrification process. The temperature dependence of the fluorescence intensity ratio of the 800 nm and 850 nm emission bands has been used to determine the temperature of the irradiated zone. Moreover, the average lifetime of the 4S3/2(2H11/2) thermalized levels have been measured as a function of the excitation spot position. An important decrease is observed at the irradiated area. These results confirm that a localized cristalline phase has been created by the laser action.  相似文献   

16.
Utilising a Nd:YVO4 laser (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) and a Nd:YAG laser (wavelength of 1064 nm, pulse duration of 7 ns, repetition rate of 25 kHz), it was found that during the pulsed laser ablation of metal targets, such as stainless steel, periodic nodular microstructures (microcones) with average periods ranging from ∼30 to ∼50 μm were formed. This period depends on the number of accumulated laser pulses and is independent of the laser wavelength. It was found that the formation of microcones could occur after as little as 1500 pulses/spot (a lower number than previously reported) are fired onto a target surface location at laser fluence of ∼12 J/cm2, intensity of ∼1.5 GW/cm2. The initial feedback mechanism required for the formation of structures is attributed to the hydrodynamic instabilities of the melt. In addition to this, it has been shown that the structures grow along the optical axis of the incoming laser radiation. We demonstrate that highly regular structures can be produced at various angles, something not satisfactorily presented on metallic surfaces previously. The affecting factors such as incident angle of the laser beam and the structures that can be formed when varying the manner in which the laser beam is scanned over the target surface have also been investigated.  相似文献   

17.
Doppler-free saturated absorption spectroscopy has been used to study the ultraviolet HgI transitions 63P0-63D1 at 296.73 nm and 63P0-61D2 at 296.76 nm. The required tunable ultraviolet radiation was produced by a ring cavity cw dye laser with intracavity ADA frequency doubler. The isotope shifts of the 63P0 -63D1 line for naturally abundant mercury have been measured to within a few MHz.  相似文献   

18.
20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal   总被引:3,自引:0,他引:3  
Operation of a 1.598-μm eye-safe third-Stokes Raman laser with a Ba(NO3)2 crystal pumped by a 1.064-μm Nd:YAG laser is described. We observed a substantial decrease in the output energy during the first 50 s of the continuous operation at 20 Hz. The energy drop is ∼76% of the initial third-Stokes output. We confirmed negative thermal lensing and thermally induced birefringence in the crystal. With a concave cavity mirror at a matched curvature to the thermal lensing, we obtained an output energy of 11 mJ at 20 Hz. TEM00 output was also obtained with a smaller pump-beam diameter with a highest conversion efficiency of 15.5% for a pumping power of only 45 MW/cm2 (0.9 J/cm2). Received: 20 November 2001 / Revised version: 20 February 2002 / Published online: 2 May 2002  相似文献   

19.
Spectrally pure high-power tunable single-mode operation of a pulsed Ti3+:sapphire laser by a tunable injection-seeding is reported. The injection laser was a cw diode laser pumped, spectrally narrowed tunable Cr3+:LiSrAlF6 (Cr3+:LiSAF) laser with a grating in the auxiliary cavity. Single-mode tunable operation of a pulsed Ti3+: sapphire ring oscillator was obtained at different wavelengths in the range between 818 nm and 848 nm with a typical linewidth of 0.006 cm-1. To extend the applicability of this operation to a differential absorption lidar system, the single-mode Ti3+:sapphire oscillator output was amplified and a high energy output of 38 mJ was obtained with the same linewidth.  相似文献   

20.
We present results on the growth of highly organised, reproducible, periodic microstructure arrays on a stainless steel substrate using multi-pulsed Nd:YAG (wavelength of 1064 nm, pulse duration of 7 ns, repetition rate of 25 kHz, beam quality factor of M 2∼1.5) laser irradiation in standard atmospheric environment (room temperature and normal pressure) with laser spot diameter of the target being ∼50 μm. The target surface was irradiated at laser fluence of ∼2.2 J/cm2 and intensity of ∼0.31×109 W/cm2, resulting in the controllable generation of arrays of microstructures with average periods ranging from ∼30 to ∼70 μm, depending on the hatching overlap between the consecutive scans. The received tips of the structures were either below or at the level of the original substrate surface, depending on the experimental conditions. The peculiarity of our work is on the utilised approach for scanning the laser beam over the surface. A possible mechanism for the formation of the structures is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号