首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
CeO2/zeolite nanocomposite was successfully prepared by the mixing-calcination method. The structural characteristics of photocatalyst were investigated by XRD, SEM, TEM and EDX. Photocatalytic degradation experiments were carried out with varying amounts of the CeO2/zeolite, the ratio of 3:1 (CeO2/zeolite) was exhibited excellent photocatalytic activity towards dye degradation. Synergistic effect of CeO2/zeolite played a key role in photocatalytic degradation. The main reactive oxygen species was determined by trapping experiments. Additionally, the recyclability was tested up to the fourth cycle. The CeO2/zeolite nanocomposite is a promising photocatalyst for removing trace and unprocessed organic contaminants in the industrial dye waste water treatment. The efficiency of CeO2/zeolite nanocomposite offers a potential economical route to degrade organic contaminants and recovering photocatalyst simultaneously.  相似文献   

2.
ZnTiO3–TiO2/organic pillared montmorillonite (pMt) composite catalyst was successfully prepared in this paper by immobilizing ZnTiO3–TiO2 onto pMt. The composition and texture of the prepared composite catalyst were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive spectrometry, ultraviolet–visible light (UV–Vis) diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity was tested via photocatalytic degradation of methyl blue (MB) under both visible irradiation and UV light. The results indicated that the ZnTiO3–TiO2/pMt composite catalyst had an apparent absorption at the area of visible irradiation, and exhibited a higher efficiency of photocatalytic degredation of MB under visible irradiation. This was due to the heterostructure of ZnTiO3–TiO2, and the mesoporous structure and specific surface area of the ZnTiO3–TiO2/pMt composite. In addition, the results of the radical scavenging experiments showed that the holes and superoxide radicals are responsible for the degradation of MB under visible irradiation.  相似文献   

3.
Zeolite-based photocatalysts were prepared by the sol-gel and deposition methods. The photocatalysts were characterised by X-ray diffraction, nitrogen adsorption-desorption isotherms, FTIR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectrometry. The activity of the prepared photocatalysts was evaluated by the UV-induced degradation of acid blue 92, a textile dye in common use. The effect of various parameters, such as catalyst concentration, initial dye concentration, thiosulphate concentration and pH, on the rate and efficiency of the photocatalytic degradation of acid blue 92 was investigated. The results showed that each parameter influenced the degradation rate and efficiency in a particular way. It was also found that, under optimised conditions, Ag/AgBr/TiO2/zeolite exhibited the highest photocatalytic performance. A comparison of catalytic activity when exposed to visible light under the same conditions showed that the photocatalysts containing AgBr had the highest activity.  相似文献   

4.
A novel SrTiO3/BiPO4 heterostructure with different amounts of SrTiO3 have been successfully prepared through the hydrothermal process. The photocatalysts were characterized by X-ray powder diffraction, UV–Vis diffuse reflectance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic performance was evaluated by degrading the methylene blue dye solution under UV light. Results showed that the samples displayed excellent photocatalytic degradation efficiency due to the highly efficient suppression of the recombination of electron–hole pairs. A possible mechanism of SrTiO3/BiPO4 heterojunctions was discussed. The research indicated that the as-prepared SrTiO3/BiPO4 heterogeneous photocatalyst can be used as an effective material for degrading industrial organic wastewater.  相似文献   

5.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

6.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   

7.
In this work, a nitrogen-doped anatase TiO2 nanocrystal is prepared by a modified sol-gel preparation method using the nonionic surfactant (polyoxyethylene sorbitan monooleate) as a structural controller and a soft template. The as-prepared samples are characterized by X-ray diffraction, Raman spectroscopy, UVVis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy techniques. Then the photocatalytic activity of these samples is assessed by the photocatalytic oxidation of phenol under visible light irradiation. The phenol concentration is measured using a UV-Vis spectrometer. Experimental results show that N-doping leads to an excellent visible light photocatalytic activity of the TiO2 nanocatalyst. Furthermore, the formation energy and electronic structure of pure and N-doped anatase TiO2 are described by density functional theory (DFT) calculations. It is found that N-doping narrowed the band gap of bare TiO2, which leads to an excellent visible light photocatalytic activity of N–TiO2 nanocatalysts. Therefore, the prepared N–TiO2 photocatalyst is expected to find the use in organic pollutant degradation under solar light illumination.  相似文献   

8.
Cobalt doped titania nanoparticles were synthesized by sol-gel method using titanium(IV) isopropoxide and cobalt nitrate as precursors. X-Ray diffraction (XRD) results showed that titania and Co/TiO2 nanoparticles only include anatase phase. The framework substitution of Co in TiO2 nanoparticles was established by XRD, scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX) and Fourier transform infrared (FT-IR) techniques. Transmission electron microscopy (TEM) images confirmed the nanocrystalline nature of Co/TiO2. The increase of cobalt doping enhanced “red-shift” in the UV-Vis absorption spectra. The dopant suppresses the growth of TiO2 grains, agglomerates them and shifts the band absorption of TiO2 from ultraviolet (UV) to visible region. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. Although the photocatalytic activity of undoped TiO2 was found to be higher than that of Co/TiO2 under UV irradiation, the presence of 0.5% Co dopant in TiO2 resulted in a catalyst with the highest activity under visible irradiation.  相似文献   

9.
Super paramagnetic ZnFe2O4 nanoparticles were prepared by a surfactant assisted (ethylamine) hydrothermal method along with heat treatment. The nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, high resolution scanning electron microscopy, Transmission electron microscopy, vibrating sample magnetometer and diffuse reflectance spectra technique. From the analyses, influence of calcination temperature on the structural, vibrational, morphological, magnetic and optical properties of ZnFe2O4 nanoparticles were investigated. The ZnFe2O4 nanoparticles with an average particle size of 17 nm showed high photocatalytic activity in the degradation of methylene blue (90 %). This work demonstrates that ZnFe2O4 can be used as a potential monocomponent in visible-light photocatalysis for the degradation of organic pollutants. Furthermore, the products were super paramagnetic and could be conveniently separated within 15 min and recycled by using simple magnet, which is very beneficial for the degradation of organic pollutants.  相似文献   

10.
In3+-doped BiVO4 nanoparticles with enhanced visible light activity have been successfully synthesized by a hydrothermal method. The synthesized materials were characterized by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, BET surface areas analysis, and ultraviolet–visible diffuse reflectance spectra. In comparison with pure BiVO4, the In3+-doped BiVO4 displayed greater photocatalytic activity in the degradation of methyl blue under visible light illumination. All samples possessed a single monoclinic structure. The introduction of In ions resulted in structural distortion and the decreased band gap energy, producing more electrons and holes for photocatalytic reaction. In the meantime, the doping In ions entails a red shift in the absorption edge and an increase in the intensity of light absorption. The best photocatalytic performance was obtained with the BiVO4 sample containing 5.0 mol% In ions.  相似文献   

11.
ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.  相似文献   

12.
The Ni/TiO2 nanoparticles with different Ni dopant content were prepared by a modified sol–gel method. The structure and photoinduced charge properties of the as-prepared catalysts were determined using X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and surface photovoltage spectroscopy techniques, and the photocatalytic efficiency of these catalysts was tested using an organic dye. It was shown that Ni modification could greatly enhance the photocatalytic efficiency of these nanocomposite catalysts by taking the photodegradation of methyl orange as a model reaction. With appropriate ratio of Ni and TiO2, Ni/TiO2 nanocomposites showed the superior photocatalytic activity than the single TiO2 nanoparticles. Surface photovoltage spectra demonstrated that Ni modification could effectively inhibit the recombination of the photoinduced electron and holes of TiO2. This electron–hole pair separation conditions are responsible for the higher photocatalytic performance of Ni/TiO2 nanocomposites in the visible region of electromagnetic spectrum.  相似文献   

13.
One‐dimensional (1D) CeO2/Bi2WO6 heterostructured nanofibers with a diameter of about 300 nm were successfully synthesized by using a straightforward strategy combining an electrospinning technique with a sintering process. The acquired products were characterized by thermogravimetric and differential scanning calorimetric (TG‐DSC), Fourier transform infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area measurements, and UV/Vis spectroscopy. The obtained CeO2/Bi2WO6 heterostructured nanofibers exhibited an excellent photocatalytic property for the degradation of Rhodamine B (RhB) dye driven by visible light due to the promoted separation of photoelectrons and holes and the large contact area between the photocatalyst and organic pollutant.  相似文献   

14.
Pure phase ZnTiO3 was prepared through a sol–gel process, then graphene-ZnTiO3 nanocomposites were synthesized by a hydrothermal method using the prepared ZnTiO3 nanoparticles and graphene oxide as precursors. X-ray diffraction results revealed the production of pure cubic ZnTiO3 at 600 °C. ZnTiO3 was anchored on the graphene nanosheets, demonstrating a spherical morphology in transmission electron microscope images. The existence of chemical bond Ti–O–C in the nanocomposites was proved by Fourier-transforming infrared spectroscopy. UV–Vis diffusive reflection spectra indicated that the absorption edge of the nanocomposites shifted towards the visible region. The photocatalytic activity of the composites was tested through the photocatalytic degradation of methyl blue under simulated solar irradiation. The results showed that the photocatalytic activity of the nanocomposites was obviously increased in contrast to pure ZnTiO3, which was strongly affected by the crystalline structure of ZnTiO3 and the concentration of graphene. The enhanced photocatalytic activity was mainly attributed to the conglomeration inhibition of ZnTiO3 nanoparticles, the electron transfer between ZnTiO3 and graphene and the extended absorption range. Furthermore, other contaminants such as tetracycline, Rhodamine B and methyl orange were tested under the same conditions to investigate the photocatalytic performance of the photocatalysts. The reusability tests indicated that the prepared composites exhibited good stability.  相似文献   

15.
采用简单的两步水热法制备出了锆基金属有机骨架和钼酸铋的复合材料MOF-808/Bi2MoO6。通过X射线粉末衍射、傅里叶红外光谱、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、紫外可见漫反射光谱、N2吸附-脱附测试和电化学测试对所制备材料的组成、微观结构、光学性质以及光生载流子的复合效率进行了分析。与纯Bi2MoO6和MOF-808相比,0.5%-MOF-808/Bi2MoO6复合材料展示出了较高的光催化活性,在可见光照射120 min时对抗生素环丙沙星(CIP)的降解率达89.7%。通过自由基捕获实验,证明了·O2-是主要活性物种,基于此我们提出了可能的光催化降解机理。  相似文献   

16.
采用简单的两步水热法制备出了锆基金属有机骨架和钼酸铋的复合材料MOF-808/Bi2MoO6。通过X射线粉末衍射、傅里叶红外光谱、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、紫外可见漫反射光谱、N2吸附-脱附测试和电化学测试对所制备材料的组成、微观结构、光学性质以及光生载流子的复合效率进行了分析。与纯Bi2MoO6和MOF-808相比,0.5%-MOF-808/Bi2MoO6复合材料展示出了较高的光催化活性,在可见光照射120 min时对抗生素环丙沙星(CIP)的降解率达89.7%。通过自由基捕获实验,证明了·O2-是主要活性物种,基于此我们提出了可能的光催化降解机理。  相似文献   

17.
首次采用固相反应法制备了新型光催化剂Sm2FeSbO7,有效地降解了水中有机污染物。利用X射线衍射、扫描电镜、X射线光电子能谱、傅里叶变换红外光谱、透射电子显微镜和紫外-可见光谱仪对Sm2FeSbO7的结构和光催化性能进行了表征。Sm2FeSbO7为烧绿石型结构,立方晶系和空间群Fd3m结晶。Sm2FeSbO7的晶格参数a为1.035 434 nm。Sm2FeSbO7的带隙经估算为2.46 eV。用Sm2FeSbO7作为光催化剂在可见光照射下降解靛蓝胭脂红,并与氮掺杂TiO2对比。结果表明,与掺氮TiO2相比,Sm2FeSbO7在可见光照射下光催化降解靛蓝胭脂红显示出较高的光催化活性。总有机碳的减少,无机产物的逐渐形成,SO42-和NO3-以及CO2的演变揭示了在光催化过程中靛蓝胭脂红的连续矿化。检测了一些来自光催化降解靛蓝胭脂红的中间体,如邻硝基苯甲酸和邻硝基苯甲醛,并获得了可能的靛蓝胭脂红光催化降解路径。  相似文献   

18.
AgBr@TiO2/GO (graphene oxide) ternary composite photocatalyst was synthesized by fabricating core–shell-structured AgBr@TiO2 and anchoring it onto the surface of GO. The obtained samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, ultraviolet–visible (UV–Vis) diffuse reflectance spectrum, and photoluminescence (PL) spectroscopy. It was found that the AgBr nanoparticles were prone to aggregation while the core–shell-structured AgBr@TiO2 possessed excellent dispersity. PL analysis revealed that the ternary-structured AgBr@TiO2/GO could effectively promote the separation rate of electron–hole pairs. Photocatalytic oxidation of benzyl alcohol to benzaldehyde under visible-light irradiation was selected as probe reaction to evaluate the photocatalytic activity of the different samples. It was found that the AgBr@TiO2/GO ternary composite exhibited evidently improved photocatalytic activity compared with AgBr, AgBr@TiO2, and AgBr/GO. On the basis of the experiment results, the photocatalytic oxidation mechanism of benzyl alcohol over AgBr@TiO2/GO is tentatively discussed.  相似文献   

19.
The structural properties of Au/TiO2 catalyst were studied by X-ray diffraction, UV-visible diffuse reflectance, photoluminescene, scanning transmission and electron microscope, and temperature programmed reduction. The photocatalytic activity of the catalysts was evaluated for the degradation of various azo-dyes such as methylene blue, methyl orange, reactive blue-4, and eosin-B under solar irradiation. It was found that TiO2 catalyst modified with gold exhibits higher percentage of degradation compared to starting TiO2. For example, TiO2 showed 35% of methyl orange degradation whereas gold modified TiO2 possessed 82%. Effect of different parameters such as pH and dye concentration has been evaluated and the photocatalytic activity was correlated with physico-chemical properties. The dye degradation rate followed first order kinetics.  相似文献   

20.
Effective removal of organic pollutants from wastewater becomes notable research because of its ecological and environmental importance. In the present study Andrographis echioides leaf extract was used for the synthesis of calcium hydroxide nanoparticles (Ca(OH)2-NPs) from calcium oxide as the calcium source. The secondary metabolites present in the plant source act as a capping agent for the formation Ca(OH)2-NPs. Further NPs were applied for photocatalytic degradation. The intention of the approach is to be low-cost preparation and easy degradation (degradation of dye without any effect) to the environment. The synthesized Ca(OH)2-NPs was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, ultra violet diffuse reflectance spectroscopy, energy dispersive X-ray spectroscopy, zeta potential and high-resolution transmission electron microscopy. The photocatalytic degradation of methylene blue (dye pollutant) studied under three different light sources such as UV, visible and sun light using Ca(OH)2-NPs. Degradation efficiency of Methylene blue dye examined under UV–Vis spectroscopy. Degradation percentage of Ca(OH)2-NPs under UV, visible and sunlight are (98.96, 97.52 and 96.38%) respectively. The overall study suggests that Ca(OH)2-NPs exhibit excellent photocatalytic property against UV, visible and sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号