首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The syntheses and crystal structures of the layered coordination polymers M(C8H8NO2)2 [M = Mn (1), Co (2), Ni (3) and Zn (4)] are described. These isostructural compounds contain centrosymmetric trans-MN2O4 octahedra as parts of infinite sheets; the ligand bonds to three adjacent metal ions in μ3-N,O,O′ mode from both its carboxylate O atoms and its amine N atom. In each case, weak intra-sheet N–H?O and C–H?O hydrogen bonds may help to consolidate the structure. Crystal data: 1, C16H16MnN2O4, M r = 355.25, monoclinic, P21/c (No. 14), a = 10.6534(2) Å, b = 4.3990(1) Å, c = 15.5733(5) Å, β = 95.1827(10)°, V = 726.85(3) Å3, Z = 2, R(F) = 0.026, wR(F 2) = 0.067. 2, C16H16CoN2O4, M r = 359.24, monoclinic, P21/c (No. 14), a = 10.6131(10) Å, b = 4.3374(4) Å, c = 15.3556(17) Å, β = 95.473(4)°, V = 703.65(12) Å3, Z = 2, R(F) = 0.041, wR(F 2) = 0.091. 3, C16H16N2NiO4, M r = 359.02, monoclinic, P21/c (No. 14), a = 10.6374(4) Å, b = 4.2964(2) Å, c = 15.2827(8) Å, β = 95.9744(14)°, V = 694.66(6) Å3, Z = 2, R(F) = 0.028, wR(F 2) = 0.070. 4, C16H16N2O4Zn, M r = 365.68, monoclinic, P21/c (No. 14), a = 10.6385(5) Å, b = 4.2967(3) Å, c = 15.2844(8) Å, β = 95.941(3)°, V = 694.89(7) Å3, Z = 2, R(F) = 0.038, wR(F 2) = 0.107.  相似文献   

2.
The reaction of N-methyl-N-trimethylsilylacetamide with silanes ClCH2SiR1R2Cl (R1, R2 = H, Me; H, Ph; Ph2) leads to the formation of (O→Si) chelate compounds with pentacoordinate silicon: N-[chloro(methyl)-silyl]methyl-, N-[chloro(phenyl)silyl]methyl-, and N-[chloro(diphenyl)silyl]methyl-N-methylacetamides. From the data of multinuclear NMR spectroscopy, the intermediates of the reaction of N-methyl-N-trimethylsilylacetamide with ClCH2SiPhHCl and ClCH2SiPh2Cl are stable in CDCl3 solution at room temperature during several days and slowly rearrange to the final (O–Si) chelate compounds.  相似文献   

3.
The preparation of EnH2[IrCl6] is described. Crystal data for C2H10Cl6IrN2 are: a = 6.8972(11) Å, b = 6.9435(16) Å, c = 7.3354(11) Å; α = 88.269(3)°, β = 65.495(2)°, γ = 60.305(2)°, V = 270.76(9) Å3, space group P1, Z = 1, dcalc = 2.864 g/cm3. Crystal chemical analysis of the general motif of the structure was performed by the translation sublattice identification technique. It has been found that complex anions [IrCl6]2? follow the nodes of a rather regular rhombohedral subcell with the parameters ac = 7.1 Å, αc = 64°.  相似文献   

4.
It was shown that the monomeric rhodium sulfate complexes [Rh(H2O)4(SO4)]+, trans-[Rh(H2O)2(SO4)2]?, cis-[Rh(H2O)2(SO4)2]?, and [Rh(SO4)3]3? were not predominant forms in aqueous solutions. The 103Rh NMR chemical shifts of the complexes were assigned, and the conditions for their formation in solutions, concentration parameters, and acidity at which the fraction of the monomers was maximal were determined. The constants of formation of the complexes and ion pair (IP) were estimated: K IP = 8 ± 3.5, K 1 ≈ 8, K 2trans ≈ 1, K 2cis ≈ 1, and K 3 ≈ 2.  相似文献   

5.
The interaction of PrCl3 with 1,3-bis(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-propanedione in aqueous ethanol in the presence of a base and 1,10-phenanthroline was studied. It was shown that the composition of the products was dependent on the reaction conditions. The solvate [Pr(L)3(Phen)]?3PriOH crystallizes in a monoclinic crystal system (P21/c space group, a = 12.2239(12) Å, b = 20.3403(19) Å, c = 26.134(3) Å, β = 102.380(2)° at 150 K). Absorption spectra of the complex in solution, as well as the spectra and the kinetic parameters of photo-luminescence were investigated.  相似文献   

6.
The structure of four new palladium complexes [Pd(HL 2 )Cl 2 and Pd(L 1–3 ) 2 ] with 3-(2-pyridyl)-5-R-1,2,4-triazoles (R=H, CH3, Ph respectively HL 1 , HL 2 , HL 3 ) was proposed based on IR, NMR, UV spectroscopy and MALDI mass spectrometry data analysis. It is found that the complexation of HL 2 and HL 3 with Pd2+ ions results in a decrease of their fluorescence intensity and it is vice versa in case of HL 1 . Furthermore, the influence of the substituent (R) in the 3-(2-pirydyl)-5-R-1,2,4-triazoles on the fluorescent and protolytic properties of HL 1–3 was investigated.  相似文献   

7.
The compounds AMMgE(PO4)3 (A = Na, K, Rb, Cs; M = Sr, Pb, Ba; E = Ti, Zr) were synthesized by the sol–gel procedure followed by heat treatment and studied by X-ray diffraction, differential thermal and electron microprobe analysis, and IR spectroscopy. The phosphates crystallize in the kosnarite (KZr2(PO4)3, space group \(R\bar 3\)) and langbeinite (K2Mg2(SO4)3, space group P213) structural types. The structure of KPbMgTi(PO4)3 was refined by full-profile analysis (space group P213, Z = 4, a = 9.8540(3) Å, V = 956.83(4) Å3). The structure is formed by a framework of vertex-sharing MgO6 and TiO6 octahedra and PO4 tetrahedra. The K and Pb atoms fully occupy the extra-framework cavities and are coordinated to nine oxygen atoms. A variable-temperature X-ray diffraction study of KPbMgTi(PO4)3 showed that the compound expands isotropically and refer to medium-expansion class (linear thermal expansion coefficients α a = α b = α c = 8 × 10–6°C–1). The number of stretching and bending modes of the PO4 tetrahedron observed in the IR spectra is in agreement with that predicted by the factor group analysis of vibrations for space groups \(R\bar 3\) and P213. A structural transition from the cubic langbeinite to the rhombohedral kosnarite was found for CsSrMgZr(PO4)3. In the morphotropic series of ASrMgZr(PO4)3 (A = Na, K, Rb, Cs) the kosnarite–langbeinite transition occurs upon the Na → K replacement. The effect of the sizes and electronegativities of cations combined in AMMgE(PO4)3 on the change of the structural type was analyzed.  相似文献   

8.
In this work, the optimization of a segregation method of 129I and 14C, two long-living radionuclides, main constituents of nuclear radioactive waste, has been developed. To be able to carry out this project, a fractional factorial experimental design was applied using 5 factors and 2 levels by factor (25–2). Only 8 experiments were necessary to identify the variables affecting the process, and very good recoveries of both radionuclides were obtained: (94?±?2)% for 129I, and (99?±?1)% for 14C. The segregation of 129I was influenced by flow (Q), volume of H2SO4 (VH+), and carriers (CR), while VH+ and time (t) played a major role in the segregation of 14C.  相似文献   

9.
Two isomeric dibenzofuran carboxaldehydes, namely 2-methoxydibenzo[b,d]furan-1-carbaldehyde (4) and 2-methoxydibenzo[b,d]furan-3-carbaldehyde (5), were synthesized. Formylation of 2-methoxydibenzo[b,d]furan (3) with α,α-dichloromethyl methyl ether and tin(IV) chloride gave a mixture of aldehydes 4 and 5 in 95 % yield and in a 35:65 ratio. Their 1H and 13C NMR spectral signals were not sufficiently resolved in CDCl3 solution to achieve their complete assignment, but this was possible in DMSO-d 6 with the help of 2D-NMR techniques: NOESY for 1H–1H interactions and HSQC and HMQC experiments for 1H–13C correlations. These aldehydes were used in the synthesis of novel β-phenylethylamines and NBOMe derivatives, which are undergoing biological evaluation.  相似文献   

10.
Single-molecule magnets (SMMs) are regarded as promising candidates for ultrahigh-density storage, quantum information processing and molecular spintronics. It is a crucial challenge for chemists to modulate magnetic dynamics of SMMs. Here, we successfully synthesized two 3d-4f polynuclear compounds [Co2Dy(TTTTCl)2(MeOH)]NO3·3MeOH (1) and [Co2Dy(TTTTCl)2 (MeOH)][Co(HTTTTCl)](NO3)2·2.5MeOH·2H2O (2), where H3TTTTCl=2,2′,2′′-(((nitrilotris(ethane-2,1-diyl)) tris(azanediyl)) tris(methylene))tris-(4-chlorophenol). On applying the approach by co-crystallization of bulky diamagnetic moiety, the effective energy barrier enhances from 401 K (1) to 536 K (2), which are both among the highest d-f heterometallic SMMs.  相似文献   

11.
The analysis of reported data on the interaction of ozone with alkaline solutions of PuVI leads to the conclusion that the process of ozonation involves reactions O3 + OH → HO 2 - + O2, O3 + + HO 2 - + OH → O 3 - + O 2 - + H2O and O3 + O 2 - → O 3 - + O2. The O 3 - radical ion oxidizes PuVI, the HO 2 - and O 2 - anions reduce PuVII and PuVI and react with O 3 - . Using persulfate instead of O3 in aerated solution at 80—95 °C results in thermal decomposition of the S2O 8 2- anion into radical ions of SO 4 - , oxidizing OH to the O ion, which in reaction with O2 forms O 3 - . The oxidation of PuVI proceeds via the formation of an activated complex with O 3 - . where charge transfer occurs with the simultaneous elimination of two H+ ions. A similar mechanism is operating in reactions of PuVI with BrO, Fe(CN) 6 3– , AmVI, and AmVII. Upon the γ-radiolysis of alkaline solutions of PuVI saturated with N2O or containing S2O 8 2– , e aq is converted into O and then into O 3 - ; F2 and XeF2 in alkaline solutions are decomposed with the formation of H2O2, which prevents producing PuVII.  相似文献   

12.
Ferrites of composition ErMIFe2O5 (MI = Li, Na, K, Cs) were synthesized by a solid-phase method. The structure of the ferrites was for the first time studied by X-ray powder diffraction. Crystal systems, unit cell parameters, and X-ray and pycnometric densities were determined. For ErLiFe2O5, a = 10.510 Å, c = 14.270 Å, V°= 1616.16 Å3, Z = 16, V subcell ° = 101.01 Å3, ρx = 6.01 g/cm3, ρpyc = 5.97 ± 0.04 g/cm3; for ErNaFe2O5, a = 10.519 Å, c = 15.510 Å, V° = 1759.56 Å3, Z = 16, V subcell ° = 109.90 Å3, ρx = 5.77 g/cm3, ρpyc = 5.72 ± 0.08 g/cm3; for ErKFe2O5, a = 11.050 Å, c = 15.480 Å, V° = 1937.33 Å3, Z = 16, V subcell ° = 121.08 Å3, ρx = 5.46 g/cm3, ρpyc = 5.41 ± 0.04 g/cm3; and for ErCsFe2O5, a = 10.78 Å, c = 16.01 Å, V° = 1905.37 Å3, Z = 16, V subcell ° = 119.09 Å3, ρx = 6.86 g/cm3, ρpyc = 6.61 ± 0.01 g/cm3.  相似文献   

13.
BaM hexaferrites substituted with both Ca2+ and Mg2+ ions, namely, Ba1-2×CaxMgxFe12O19 (0.0?≤?x?≤?0.1), synthesized during a sol–gel auto-combustion route. The hexaferrite phase and morphology of all samples were investigated using X-ray powder diffraction, a field emission scanning electron microscope, a high-resolution transmission microscope, and Fourier transform infrared spectroscopy. In addition, an M-type hexagonal structure was confirmed using XRD for all samples. FE-SEM and TEM revealed the shape of the hexagonal plate. Measurements of the magnetization versus the field M(H) of Ba1-2×CaxMgxFe12O19 (0.0?≤?x?≤?0.1) nanohexaferrites were conducted at 300 and 10?K. A hard-ferrimagnetic behavior at both 300 and 10?K was noted for the different products produced. The squareness ratio indicates the uniaxial anisotropy for various products. The deduced values of saturation magnetization (Ms) in all substituted samples are higher than in the pristine sample (x?=?0). The Ba0.96Ca0.02Mg0.02Fe12O19 nanosized hexaferrite showed the highest values of Ms, remanence Mr, magneton number (nB), and magnetocrystalline anisotropy constant (Keff). In contrast, the values of the coercive field (Hc) and intrinsic coercivity (Hci) diminish with the increase in the amount of the substituted Ca and Mg elements.  相似文献   

14.
195Pt, 1H, and 13C NMR spectroscopy was used to study the structure of binuclear platinum(III) acetamidate complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands [Pt2(phen)2(acam)4](NO3)2 (1) and [Pt2(bipy)2(acam)4](NO3)2 (2) in aqueous solutions. The 195Pt NMR spectra of solutions of complexes 1 and 2 in D2O exhibit two signals with satellites due to the 195Pt–195Pt spin-spin coupling (1 J(Pt–Pt) ≈ 6345 Hz), whereas their 1H and 13C NMR spectra contain four sets of signals for the protons and the carbon atoms of the heterocyclic and acetamidate ligands. The signals were assigned using the COSY, NOESY, and HSQC/ HMBC experiments and comparing the coordination shifts of the signals for the protons of heterocycles. These data allowed us to draw a conclusion that binuclear complexes 1 and 2 in solution have a head-to-head structure with nonequivalent platinum(III) atoms (coordination cores PtN5 and PtN3O2), the axial-equatorial coordination of the bidentate heterocyclic molecules, and two bridging and two terminal acetamidate ligands.  相似文献   

15.
Reaction of Os2(OAc)4Cl2 with an excess of HDPhF (HDPhF = N,N′-diphenylformamidine) gives a high yield of Os2(DPhF)4Cl2 (1), which can be converted to its azido analog, Os2(DPhF)4(N3)2 (3), by treatment with NaN3. We report a major improvement on the preparation of Os2(chp)4Cl (2; Hchp = 2-chloro-6-hydroxypyridine) by synthesizing the compound in the reducing solvent ethanol. Reaction of 2 with NaN3 affords the azido complex Os2(chp)4N3 (4). Compound 3 has been examined by X-ray crystallography, and has an Os–Os bond distance of 2.45 Å, suggesting a (π*)2 ground state for the molecule.  相似文献   

16.
The reaction mechanism of the gas-phase PtCH2 + with H2S has been systematically investigated on the doublet and quartet potential energy surfaces at BPW91/6-311++G(2d, p)∪ SDD level. The Pt in PtCH2 + prefers to attack S–H bond in H2S. For PtCH2 + + H2S reaction, the potential energy surfaces (PESs), including three reaction pathways of hydrogen (including one and two hydrogen elimination) and methane elimination, have been explored and characterized. By contrast with hydrogen elimination, methane elimination reaction channel is energetically favorable, which is in good agreement with the experimental observation. The optimal S–H bond activation is the first step, followed by cleavage of Pt–C and Pt–S bond. About the path a and b, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction \(\varDelta E_{\text{int}}^{ \ne }\), which is the actual interaction energy between the deformed reactants in the transition state.  相似文献   

17.
A potentiometric method has been used for the determination of the protonation constants of N-(2-hydroxyethyl)iminodiacetic acid (HEIDA or L) at various temperatures 283.15?≤?T/K?≤?383.15 and different ionic strengths of NaCl(aq), 0.12?≤?I/mol·kg?1?≤?4.84. Ionic strength dependence parameters were calculated using a Debye–Hückel type equation, Specific Ion Interaction Theory and Pitzer equations. Protonation constants at infinite dilution calculated by the SIT model are \( \log_{10} \left( {{}^{T}K_{1}^{\text{H}} } \right) = 8.998 \pm 0.008 \) (amino group), \( \log_{10} \left( {{}^{T}K_{2}^{\text{H}} } \right) = 2.515 \pm 0.009 \) and \( \log_{10} \left( {{}^{T}K_{3}^{\text{H}} } \right) = 1.06 \pm 0.002 \) (carboxylic groups). The formation constants of HEIDA complexes with sodium, calcium and magnesium were determined. In the first case, the formation of a weak complex species, NaL, was found and the stability constant value at infinite dilution is log10KNaL?=?0.78?±?0.23. For Ca2+ and Mg2+, the CaL, CaHL, CaL2 and MgL species were found, respectively. The calculated stability constants for the calcium complexes at T?=?298.15 K and I?=?0.150 mol·dm?3 are: log10βCaL?=?4.92?±?0.01, log10βCaHL?=?11.11?±?0.02 and \( \log_{10} \beta_{\text{Ca{L}}_{2}} \)?=?7.84?±?0.03, while for the magnesium complex (at I?=?0.176 mol·dm?3): log10βMgL?=?2.928?±?0.006. Protonation thermodynamic functions have also been calculated and interpreted.  相似文献   

18.
The structures of paramagnetic complexes CuCl2?L with L = HetCH2Si(OCH2CH2)3N [Het = pyrrol-1-yl (1), indol-1-yl (2), carbazol-9-yl (3), imidazole-1-yl (4), 3,5-dimethylpyrazol-1-yl (5), 1,2,4-triazol-1-yl (6), benzimidazol-1-yl (7), and 1,2,3-benzotriazol-1-yl (8)] were studied by the ESR and quantum chemical methods in terms of the density functional theory (DFT) approximation. The difference in structures of complexes CuCl2?1—CuCl2?8 is mainly determined by the nature of the five-membered heterocycle. The ESR spectra at room temperature are typical of the mononuclear complexes of CuII of axial symmetry with various types of distortions. In complexes CuCl2?1—CuCl2?3, narrow symmetric signals of zero-valent copper are recorded. These signals remain in the spectra for at least six months, which can characterize them as efficient stabilizing matrices of nanoparticles.  相似文献   

19.
The process of complex formation of maleic acid (H2L) with the ions Zn2+, Ni2+, Co2+, Cu2+ was studied by potentiometric titration in a wide range of concentration ratios at 298 K and I = 0.1 mol/l (NaNO3). The moieties ZnL, CoL, NiL, NiL 2 2? , CuL, and CuL 2 2? were detected and their stability constants were determined.  相似文献   

20.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号