首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Comptes Rendus Chimie》2017,20(5):540-548
Novel solid acid catalysts synthesized from aluminum phosphate were prepared via a precipitation method and a subsequent sulfating treatment. Their catalytic performances for the esterification of propanoic acid with n-butanol were investigated. The as-prepared catalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption–desorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of ammonia (NH3-TPD), infrared spectroscopy of adsorbed pyridine, and other techniques. Experimental results of esterification reactions indicated that the calcination temperature can significantly affect the catalytic performances and the catalyst calcined at 500 °C (SO42−/AlPO4-500) exhibited the highest activity. The effects of different reaction conditions including reaction time, reaction temperature, catalyst amount and alcohol/acid molar ratio were studied in detail. The maximum propanoic acid conversion of 91% was achieved under optimum reaction conditions. Furthermore, the as-prepared SO42−/AlPO4-500 catalysts were tested for their reusability in repeated reaction cycles and could be effectively regenerated by a simple reactivation method.  相似文献   

2.
采用浸渍法制备了一系列MgO改性催化剂MgO/HMCM-22, 利用X射线衍射、N2物理吸附-脱附、扫描电镜、傅里叶变换红外光谱、NH3及CO2程序升温脱附等技术对所制催化剂进行了表征. 结果表明, MgO改性后MCM-22分子筛仍保持原有的结构; 随着MgO负载量的增加, 催化剂的碱强度和碱含量显著增加, 而强酸含量明显减少, 弱酸酸位有所增加. 以Knoevenagel缩合为探针反应, 考察了所制催化剂的性能. 在优化的反应条件下, MgO/HMCM-22上苯甲醛转化率高达92.6%. 催化剂 MgO/HMCM-22和MgO/NaMCM-22的催化性能明显优于HMCM-22和MgO. 酸中心和碱中心均对该缩合反应起着重要的促进作用. MgO/HMCM-22对Knoevenagel缩合反应显示出较高的催化活性, 体现出明显的酸碱协同催化作用.  相似文献   

3.
In the present study, 1-(4,5-dihydro-3,6-dimethyl-4-(1,3-diphenyl-1H-pyrazol-4-yl)-3aH-indazol-5-yl)methanone derivatives (9–12) and isoxazoleyl (13–16) have been synthesized by the condensation of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (1–4) with acetyl acetone via Knoevenagel/Michael/aldol reactions in a sequential manner to yield intermediate cyclohexanone (5–8). The intermediates (5–8) treated with NH2NH2 · H2O/NH2OH · HCl afforded 4-indazolyl-1,3,4-trisubstituted pyrazole and isoxazoleyl derivatives. All of these compounds are reported for the first time, and the structures of these compounds were confirmed by means of infrared, 1H NMR, 13C NMR, and mass spectroscopy.  相似文献   

4.
AgBr@TiO2/GO (graphene oxide) ternary composite photocatalyst was synthesized by fabricating core–shell-structured AgBr@TiO2 and anchoring it onto the surface of GO. The obtained samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, ultraviolet–visible (UV–Vis) diffuse reflectance spectrum, and photoluminescence (PL) spectroscopy. It was found that the AgBr nanoparticles were prone to aggregation while the core–shell-structured AgBr@TiO2 possessed excellent dispersity. PL analysis revealed that the ternary-structured AgBr@TiO2/GO could effectively promote the separation rate of electron–hole pairs. Photocatalytic oxidation of benzyl alcohol to benzaldehyde under visible-light irradiation was selected as probe reaction to evaluate the photocatalytic activity of the different samples. It was found that the AgBr@TiO2/GO ternary composite exhibited evidently improved photocatalytic activity compared with AgBr, AgBr@TiO2, and AgBr/GO. On the basis of the experiment results, the photocatalytic oxidation mechanism of benzyl alcohol over AgBr@TiO2/GO is tentatively discussed.  相似文献   

5.
A series of novel complexes NiL n · NH3 were obtained by reactions of equimolar amounts of the ligands H2L n (prepared by condensation of aroyl(perfluoroacyl)methanes with benzoylhydrazine) as solutions in ethanol and nickel(II) acetate as a solution in aqueous ammonia. The empirical formulas and square planar structures of the complexes obtained were determined using elemental analysis, IR and 1H NMR spectroscopy, and X-ray diffraction.  相似文献   

6.
Spherical MCM-41 with various copper and iron loadings was prepared by surfactant directed co-condensation method. The obtained samples were characterized with respect to their structure (X-ray diffraction, XRD), texture (N2 sorption), morphology (scanning electron microscopy, SEM), chemical composition (inductively coupled plasma optical emission spectrometry, ICP-OES), surface acidity (temperature programmed desorption of ammonia, NH3-TPD), form, and aggregation of iron and copper species (diffuse reflectance UV-Vis spectroscopy, UV-Vis DRS) as well as their reducibility (temperature programmed reduction with hydrogen, H2-TPR). The spherical MCM-41 samples modified with transition metals were tested as catalysts of selective catalytic reduction of NO with ammonia (NH3-SCR). Copper containing catalysts presented high catalytic activity at low-temperature NH3-SCR with a very high selectivity to nitrogen, which is desired reaction products. Similar results were obtained for iron containing catalysts, however in this case the loadings and forms of iron incorporated into silica samples very strongly influenced catalytic performance of the studied samples. The efficiency of the NH3-SCR process at higher temperatures was significantly limited by the side reaction of direct ammonia oxidation. The reactivity of ammonia molecules chemisorbed on the catalysts surface in NO reduction (NH3-SCR) and their selective oxidation (NH3-SCO) was verified by temperature-programmed surface reactions.  相似文献   

7.
A two-dimensional zinc phosphite-phosphate [C3H6(OH)NH3][Zn2(HPO3)(PO4)] (1) was hydrothermally synthesized with 2-hydroxypropylammonium cation as the structure-directing agent. This compound has been characterized by single-crystal X-ray diffraction, IR spectroscopy, and powder X-ray diffraction (XRD). Its microporous framework is constructed by ZnO4, PO4, and HPO3 tetrahedral building blocks with 3, 4, and 6-ring channels. With 1 as base catalytic support, the Knoevenagel condensation reaction of benzaldehyde and ethyl cyanoacetate gives a yield of 59%.  相似文献   

8.
The reaction rate of Knoevenagel condensation can be dramatically enhanced by irradiating the reaction mixture containing an aldehyde, diethyl malonate, P2O5, piperidine, and chlorobenzene with a commercial microwave oven. Six Knoevenagel condensation products were synthesized within 5–15 min in good yields.  相似文献   

9.
The thermal reactions of cationic 3d transition‐metal hydrides MH+ (M=Sc–Zn, except V and Cu) with ammonia have been studied by gas‐phase experiments and computational methods. There are three primary reaction channels: 1) H2 elimination by N? H bond activation, 2) ligand exchange under the formation of M(NH3)+, and 3) proton transfer to yield NH4+. Computational studies of these three reaction channels have been performed for the couples MH+/NH3 (M=Sc–Zn) to elucidate mechanistic aspects and characteristic reaction patterns of the first row. For N? H activation, σ‐bond metathesis was found to be operative.  相似文献   

10.
The properties of two silica samples were studied; one sample precipitated by ammonia from a saturated (NH4)2SiF6 solution and the other washed out from the sublimate obtained by joint evaporation of (NH4)2SiF6 and SiO2. These silicas are fundamentally different compounds. Their chemical composition was determined. Evolution of samples during heating to 1000°C was interpreted using chemical analysis, IR spectroscopy, and X-ray powder diffraction. A possibility of removing fluorine and ammonia from test samples by heat and chemical treatment is demonstrated. Fluorine impurities in the form of fluoroammonium salts are removed completely during heating to 300–400°C; surface fluoride ions are removed only upon heating to 800°C.  相似文献   

11.
Nickel(II) complexes NiL n ? NH3 (n = 1–5) with the products of condensation of ethyl 5,5-dimethyl-2,4-dioxohexanoate with aromatic acid hydrazides (H2L1–H2L5) were synthesized. The complexes were studied by elemental analysis and IR and 1H NMR spectroscopy. The structure of the complex NiL1 ? NH3 was determined by X-ray diffraction (CIF file CCDC no. 1057268).  相似文献   

12.
以二甲基咪唑为有机连接体和以Zn(OH)2或Zn(NO3)2·6H2O为Zn源,在甲醇与氨水的混合溶液、甲醇和DMF 3种不同的合成体系中合成了沸石咪唑酯骨架结构材料ZIF-8(分别记为ZIF-8(NH4OH)、ZIF-8(MeOH)和ZIF-8(DMF),并采用XRD、FTIR、N2吸附、SEM、TPD及Knoevenagel缩合反应等手段对所合成材料进行了表征。结果表明,采用这3种不同的合成方法均可成功制备出ZIF-8,所合成的ZIF-8的形貌基本一致,但其晶粒大小和酸碱性能有较大区别,同ZIF-8(NH4OH)和ZIF-8(DMF)相比,ZIF-8(MeOH)晶粒分布集中、平均粒径较小且具有较大的外比表面积和较多的酸碱位。不同方法合成的ZIF-8在苯甲醛和丙二腈的Knoevenagel缩合反应中的催化性能有很大差异,ZIF-8(MeOH)催化活性明显高于ZIF-8(DMF)和ZIF-8(NH4OH),其较高的催化活性,同其较大的外比表面积和酸碱性能密切相关。  相似文献   

13.
Selective catalytic reduction (SCR) with ammonia has been considered as the most promising technology, as its effect deals with the NOX. Novel Fe-doped V2O5/TiO2 catalysts were prepared by sol–gel and impregnation methods. The effects of iron content and reaction temperature on the catalyst SCR reaction activity were explored by a test device, the results of which revealed that catalysts could exhibit the best catalytic activity when the iron mass ratio was 0.05%. It further proved that the VTiFe (0.05%) catalyst performed the best in denitration and its NOX conversion reached 99.5% at 270 °C. The outcome of experimental procedures: Brunauer–Emmett–Teller surface area, X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and adsorption (H2-TPR, NH3-TPD) techniques showed that the iron existed in the form of Fe3+ and Fe2+ and the superior catalytic performance was attributed to the highly dispersed active species, lots of surface acid sites and absorbed oxygen. The modified Fe-doped catalysts do not only have terrific SCR activities, but also a rather broad range of active temperature which also enhances the resistance to SO2 and H2O.  相似文献   

14.
以二甲基咪唑为有机连接体和以Zn(OH)2或Zn(NO3)2·6H2O为Zn源,在甲醇与氨水的混合溶液、甲醇和DMF3种不同的合成体系中合成了沸石咪唑酯骨架结构材料ZIF-8(分别记为ZIF-8(NH4OH)、ZIF-8(MeOH)和ZIF-8(DMF),并采用XRD、FTIR、N2吸附、SEM、TPD及Knoevenagel缩合反应等手段对所合成材料进行了表征。结果表明,采用这3种不同的合成方法均可成功制备出ZIF-8,所合成的ZIF-8的形貌基本一致,但其晶粒大小和酸碱性能有较大区别,同ZIF-8(NH4OH)和ZIF-8(DMF)相比,ZIF-8(MeOH)晶粒分布集中、平均粒径较小且具有较大的外比表面积和较多的酸碱位。不同方法合成的ZIF-8在苯甲醛和丙二腈的Knoevenagel缩合反应中的催化性能有很大差异,ZIF-8(MeOH)催化活性明显高于ZIF-8(DMF)和ZIF-8(NH4OH),其较高的催化活性,同其较大的外比表面积和酸碱性能密切相关。  相似文献   

15.
In this paper, guanidine groups (Gn) supported on modified magnetic nanoparticles (Fe3O4–4,4′‐MDI) were synthesized for the first time. The catalyst synthesized was characterized by various techniques such as SEM (Scanning Electron Microscopy), TEM (Transmission electron microscopy), XRD ( X‐ray Diffraction ), TGA (Thermogravimetric ananlysis), EDS ( Energy‐dispersive X‐ray spectroscopy ) and VSM (vibrating sample magnetometer). The catalyst activity of modified MNPs–MDI‐Gn, as powerful basic nanocatalyst, was probed through the Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation reactions. Conversion was high under optimal conditions, and reaction time was remarkably shortened. This nanocatalyst could simply be separated and recovered from the reaction mixture by simple magnetic decantation and reused many times without significant loss of its catalytic activity. Also, the nanocatalyst could be recycled for at least seven (Knoevenagel condensation) and six (Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation) additional cycles after they were separated by magnetic decantation and, washed with ethanol, air‐dried, and immediately reused.  相似文献   

16.
In connection with the total synthesis of natural products by retro-mass spectral approach,1–3 the thermal reaction between 6,7-dimethoxy-3-isochromanone 1 and benzalmalononitrile 3 was studied. The Knoevenagel condensation product4 was obtained over and above the expected Diels-Alder adduct. The scope, limitation and mechanism of the aforesaid unusual thermal Knoevenagel condensation through a thermal Michael reaction is described.  相似文献   

17.
Ammonium uranates (AU) obtained by the addition of aqueous NH4 OH to a solution of UO2 (NO3)2 or the equilibrium reaction of UO3 · 2H2 O with the vapour over concentrated NH4 OH have been studied by X-ray diffraction (XRD) analysis, diffuse reflectance Fourier transform infrared spectrometry (DR-FTIR) and chemical analysis. Ammonia can be present as either NH3 or NH 4 + . For precipitates obtained at a pH of 3.7, ammonia in the form of NH3 is predominant. For ammonium uranate obtained by reaction over concentrated NH4OH, most of the ammonia is bonded as NH 4 + . The reaction mechanism and structures of the products are also discussed.  相似文献   

18.
Porous materials based on NH2-MIL-101(Cr) MOF and their hierarchical acid-base composite with non-precious CaO was successfully prepared using a one-pot scalable hydrothermal approach. The composites were characterized by XRD, FTIR, UV–vis, 1HNMR, TGA, N2 adsorption–desorption isotherms, HRTEM and FESEM. The quantitative assessment of the basic sites was performed by benzoic acid titration. The results reveal that there is no remarkable structural alterations in the NH2-MIL-101(Cr) after incorporation of CaO. Raising the CaO content boosted the strength of and content of Lewis basic sites from 0.31 to 1.34 mmol g?1 due to the incorporation with CaO (0.04). Knoevenagel condensation reactions were performed as the probe reactions over the CaO/NH2-MIL-101(Cr) catalysts. Both basic and acidic sites potentially boosted the reaction. Pure NH2-MIL-101(Cr) display the catalytic conversion in the reaction (11%) which could be attributed weak basic sites on the NH2-MIL-101(Cr) framework. However, the conversion (%) was potentially increased over NH2-MIL-101(Cr) loaded with various content of CaO. The highest performance of (99%) conversion was achieved for (0.04) CaO/NH2-MIL-101(Cr) catalyst. Exceptional conversion above 90% have been obtained for benzaldehyde derivatives both withdrawing and donating electron moieties. The composites can be recycled in four runs with a very small loss in performance. Furthermore, the composites produced tend to be feasible for various catalytic processes, exploring new avenues to produce of novel inorganic and organic composite materials as heterogeneous catalysts.  相似文献   

19.
Crude aqueous extract from the orchid ‘Dendrobium Sonia earsakul’ was utilised as a natural product reagent in flow injection analysis (FIA) incorporating a gas diffusion unit (GD) for the determination of ammonia nitrogen. Sample solution was injected into a NaOH donor stream to generate ammonia gas (NH3). In the GD unit, NH3 diffused across a PTFE gas-permeable membrane into the acceptor stream of the orchid extract. As the result, the aqueous orchid reagent became more alkaline and its colour changed from purple to green. The change in the colour of orchid acceptor correlated with the concentration of ammonia nitrogen in the sample and its absorbance monitored by a spectrophotometer at 600 nm. Ammonia nitrogen in chemical fertiliser samples and wastewater samples from agricultural fields were determined and reported as %N (w/w) and mg N L?1, respectively. For chemical fertilisers which contained high content of ammonia nitrogen, a flow rate of 1.0 mL min?1 and injection volume of 100 µL were used with a linear range of 5–40 mmol L?1 and detection limit of 2.12 mmol L?1. However, a higher sensitivity was required for wastewater samples having low ammonia nitrogen content. The flow rate was reduced to 0.3 mL min?1 and the injection volume increased to 1000 µL. As a result, detection limit of 0.76 mmol L?1 was achieved with linear range of 1–5 mmol L?1. The results of our method agreed well with that using the OPA method employing fluorescence detection.  相似文献   

20.

A series of catalysts based on Mn-Fe loaded zeolites was prepared by impregnation and their activity in the selective catalytic reduction of NO with ammonia (NH3-SCR) was investigated. The highest catalytic conversion was recorded for MnFe-ZSM-5 (MnFe-Z), followed by MnFe-BEA (MnFe-B) and MnFe-MOR (MnFe-M), while MnFe-FER (MnFe-F) showed a very poor activity over the entire temperature range. In order to evidence a correlation between the structure and acidity of the zeolites and NO conversion, the prepared samples were characterized by various techniques (ICP-AES, N2 physisorption at 77 K, XRD, 27NMR, Raman, FTIR spectroscopy of adsorbed ammonia, H2-TPR, DRS UV–Vis, EPR and XPS). The superior catalytic activity of MnFe-Z at low temperature is attributed to the abundance of Mn4+ concentration as revealed by XPS, the highest NH3-L/NH4+ ratio indicative of the contribution of metals in generating Lewis acidic centers as evidenced by IR-NH3, and the better reducibility of manganese and iron on ZSM-5 which increases the kinetics for red-ox cycles as confirmed in TPR analysis. Fe3Mn3O8 mixed oxide phase is also detected by XRD and XPS and can be associated with the high reducibility of MnFe-Z which generates a high oxidation ability favoring NO to NO2 oxidation. Raman spectroscopy was also used to confirm the existence of a strong synergy between metals and ZSM-5 support revealed by the shift in the signal position and the decrease in band intensities. The results showed that the zeolite framework and acidity generate catalysts with different textural and structural properties which influence the metal dispersion and speciation and hence influence the catalytic performances.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号