首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glucose oxidase from Aspergillus niger, the specific enzyme for β-d-glucose oxidation, can also oxidize other related saccharides at very slow or negligible rates. The present study aimed to compare the kinetics of d-glucose oxidation using immobilized glucose oxidase on bead cellulose for the oxidation of related saccharides using the same biocatalyst. The significant differences were observed between the reaction rates for d-glucose and other saccharides examined. As a result, k cat/K M ratio for d-glucose was determined to be 42 times higher than d-mannose, 61.6 times higher than d-galactose, 279 times higher than d-xylose, and 254 times higher than for d-fructose and d-cellobiose. On the basis of these differences, the ability of immobilized glucose oxidase to remove d-glucose from d-cellobiose, d-glucose from d-xylose, and d-xylose from d-lyxose was examined. Immobilized catalase on Eupergit and mixed with immobilized glucose oxidase on bead cellulose or co-immobilized with glucose oxidase on bead cellulose was used for elimination of hydrogen peroxide from the reaction mixture. The accelerated elimination of d-glucose and d-xylose in the presence of co-immobilized catalase was observed. The co-immobilized glucose oxidase and catalase were able to decrease d-glucose or d-xylose content to 0–0.005% of their initial concentrations, while a minimum decrease of low oxidized saccharides d-xylose, d-cellobiose, and d-lyxose, respectively, was observed.  相似文献   

2.
Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral separation of underivatized d,l-His by ligand exchange capillary electrophoresis (LECE), utilizing accurate ex ante calculations. This has been obtained by the addition to the background electrolytes (BGE) of NaClO4 which renders the separations “all in solution processes”, allowing to accurately calculate in advance the concentrations of the species present in solution and to optimize the system performances. To this aim, the formation of ternary complexes of Cu2+ ion and l-lysine (l-Lys) or l-ornithine (l-Orn) with l- and d-histidine (His), and histamine (Hm) have been studied by potentiometry and calorimetry at 25 °C and with 0.1 mol dm?3 (KNO3) in aqueous solution. The ternary species [Cu(L)(l-His)H]+ and [Cu(L)(d-His)H]+ (where L?=?l-Lys or l-Orn) show a slight but still detectable stereoselectivity, and the determination of ΔH° and ΔS° values allowed the understanding of the factors which determine this phenomenon. The stereoselectivity showed by the protonated ternary species has been exploited to chirally separate d,l-His in LECE, by using the binary complexes of copper(II) with l-Lys or l-Orn as background electrolytes added with the appropriate amounts of NaClO4.
Figure
Schematic view of the separation process  相似文献   

3.
The enthalpy relaxation of the pentose isomers (d-xylose, d-ribose, l-arabinose, and d-arabinose) was investigated in terms of the Tool–Narayanaswamy–Moynihan and Adam–Gibbs–Vogel models using differential scanning calorimetry. Single set of parameters for each model was obtained from the multicurve-fitting procedure. The differences between the glass transition and relaxation parameters were discussed in terms of isomeric effect. The cooperativity determined from curve-fitting results was further compared to those obtained via Donth’s formula.  相似文献   

4.
Xylose mother liquor (XML) is a by-product of xylose production through acid hydrolysis from corncobs, which can be used potentially for alternative fermentation feedstock. Sixteen Clostridia including 13 wild-type, 1 industrial strain, and 2 genetically engineered strains were screened in XML, among which the industrial strain Clostridium acetobutylicum EA 2018 showed the highest titer of solvents (12.7 g/L) among non-genetic populations, whereas only 40 % of the xylose was consumed. An engineered strain (2018glcG-TBA) obtained by combination of glcG disruption and expression of the d-xylose proton-symporter, d-xylose isomerase, and xylulokinase was able to completely utilize glucose and l-arabinose, and 88 % xylose in XML. The 2018glcG-TBA produced total solvents up to 21 g/L with a 50 % enhancement of total solvent yield (0.33 g/g sugar) compared to that of EA 2018 (0.21 g/g sugar) in XML. This XML-based acetone–butanol–ethanol fermentation using recombinant 2018glcG-TBA was estimated to be economically promising for future production of solvents.  相似文献   

5.
Xylitol, a naturally occurring five-carbon sugar alcohol derived from d-xylose, is currently in high demand by industries. Trichoderma reesei, a prolific industrial cellulase and hemicellulase producing fungus, is able to selectively use d-xylose from hemicelluloses for xylitol production. The xylitol production by T. reesei can be enhanced by genetic engineering of blocking further xylitol metabolism in the d-xylose pathway. We have used two different T. reesei strains which are impaired in the further metabolism of xylitol including a single mutant in which the xylitol dehydrogenase gene was deleted (?xdh1) and a double mutant where additionally l-arabinitol-4-dehydrogenase, an enzyme which can partially compensate for xylitol dehydrogenase function, was deleted (?lad1?xdh1). Barely straw was first pretreated using NaOH and Organosolv pretreatment methods. The highest xylitol production of 6.1 and 13.22 g/L was obtained using medium supplemented with 2 % Organosolv-pretreated barley straw and 2 % d-xylose by the ?xdh1 and ?lad1?xdh1 strains, respectively.  相似文献   

6.
Fifteen carbohydrates (d-mannose, d-glucose, d-galactose, methyl-α-d-glucose, l-rhamnose, d-xylose, d-fructose, d-arabinose, dulcitol, mannitol, β-maltose, α-lactose, melibiose, sucrose, and raffinose) and four cyclitols [l-(+)-bornesitol, myo-inositol, per-O-acetyl-1-l-(+)-bornesitol, and quinic acid] were assayed for in vitro ACE inhibition. Of these molecules, per-O-Acetyl-1-l-(+)-bornesitol, quinic acid, methyl-α-d-glucose, d-rhamnose, raffinose, and the disaccharides were determined to be either inactive or weak ACE inhibitors, whereas l-(+)-bornesitol, d-galactose, d-glucose, and myo-inositol exhibited significant ACE inhibition. Molecular docking studies were performed to investigate interactions between active compounds and human ACE (Protein Data Bank, PDB 1O83). The results of various calculations showed that all active sugars bind to the same enzyme region, which is a tunnel directed towards the active site. With the exception of myo-inositol (K i = 13.95 μM, IC50 = 449.2 μM), the active compounds presented similar K i and IC50 values. d-Galactose (K i = 19.6 μM, IC50 = 35.7 μM) and l-(+)-bornesitol (K i = 25.3 μM, IC50 = 41.4 μM) were the most active compounds, followed by d-glucose (K i = 32.9 μM, IC50 = 85.7 μM). Our docking calculations are in agreement with the experimental data and show a new binding region for sugar-like molecules, which may be explored for the development of new ACE inhibitors.  相似文献   

7.
d-Kynurenine (d-KYN), a metabolite of d-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine, two neuroactive compounds that are believed to play a role in the pathophysiology of several neurological and psychiatric diseases. In order to investigate the possible presence of d-KYN in biological tissues, we developed a novel assay based on the conversion of d-KYN to KYNA by purified d-amino acid oxidase (d-AAO). Samples were incubated with d-AAO under optimal conditions for measuring d-AAO activity (100 mM borate buffer, pH 9.0), and newly produced KYNA was detected by high-performance liquid chromatography (HPLC) with fluorimetric detection. The detection limit for d-KYN was 300 fmol, and linearity of the assay was ascertained up to 300 pmol. No assay interference was noted when other d-amino acids, including d-serine and d-aspartate, were present in the incubation mixture at 50-fold higher concentrations than d-KYN. Using this new method, d-KYN was readily detected in the brain, liver, and plasma of mice treated systemically with d-KYN (300 mg/kg). In these experiments, enantioselectivity was confirmed by determining total kynurenine levels in the same samples using a conventional HPLC assay. Availability of a sensitive, specific, and simple method for d-KYN measurement will be instrumental for evaluating whether d-KYN should be considered for a role in physiology and pathology.  相似文献   

8.
Stability constants for the complexes of anionic, neutral (zwitterionic) and protonated forms of l- and d-enantiomers of eight amino acids with β-cyclodextrin and the positively charged quaternary ammonium β-cyclodextrin (QA-β-CD, DS?=?3.6?±?0.3) have been determined by spectrophotometric and pH-potentiometric methods. The highest stability constants have been obtained for the aromatic amino acids phenylalanine, tyrosine and tryptophan. Except the dianion of tyrosine and QA-β-CD, values for the anions in the range of 80–120 have been found, the stability constants for the zwitterionic forms are much smaller and complex formation is negligible with the protonated species. In the case of the other amino acids the differences are less pronounced. The results are interpreted in terms of hydrogen bonding, steric effects and electrostatic interactions between the amino acid moiety and the rims of the cyclodextrins, in addition to the inclusion of the side chain, and are supported by 1H and 13C NMR investigations on the systems containing l-phenylalanine and l-tyrosine. The differences between the complex formation constants of the l- and d-enantiomers do not exceed the limits of experimental error in most cases.  相似文献   

9.
Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral recognition of d,l-Trp and d,l-His using l-Cys-capped gold nanoparticles (AuNPs) and copper(II) ion. In the l-Cys-capped AuNPs, the thiol group of the amino acid interacts with AuNPs through the formation of Au–S bond, whereas the α-amino and α-carboxyl groups of the surface-confined cysteine can coordinate the copper(II) ion, which in turn, binds the l- or d-amino acid present in solution forming diastereoisomeric complexes. The resulting systems have been characterized by UV–Vis spectra and dynamic light scattering measurements, obtaining different results for l- and d-Trp, as well as for l- and d-His. The knowledge of the solution equilibria of the investigated systems allowed us to accurately calculate in advance the concentrations of the species present in solution and to optimize the system performances, highlighting the pivotal role of copper(II) ion in the enantiodiscrimination processes.  相似文献   

10.
d-Amino acid oxidase from the yeast Trigonopsis variabilis (TvDAAO) is widely used in fine organic synthesis, including the preparation of unnatural l-amino acids and α-keto acids. The analysis of the three-dimensional structure of TvDAAO was carried out with the aim of producing the enzyme specific to d-amino acids with bulky side chains. The analysis revealed the residue Phe54 at the entrance to the active site, which controls the substrate access to this site. The residue Phe54 was replaced by residues Ala, Ser, and Tyr. The cultivation of recombinant E. coli strains expressing TvDAAO mutants showed that the mutein with the Phe54Ala substitution had very low stability. Thus, the inactivation of the enzyme occured within 10 min after the cell disruption. The Phe54Ser TvDAAO and Phe54Tyr TvDAAO mutants were obtained as homogeneous preparations, and their thermal stability and catalytic properties were investigated. The introduction of Phe54Ser and Phe54Tyr substitutions resulted in additional stabilization of the protein macromolecule compared to the wild-type TvDAAO. Thus, the half-inactivation time for the mutant enzymes at 54 °C increased by a factor of 1.5 and 2, respectively. As in the case of wild-type TvDAAO, the thermal inactivation of the muteins proceeds via a two-step dissociative mechanism. The introduction of mutations led to a strong change in the substrate specificity profile. The mutants have no activity toward a series of d-amino acids (Phe54Ser TvDAAO toward d-Ala, d-Ser, d-Val, and d-Thr; Phe54Tyr TvDAAO toward d-Ser, d-Tyr, d-Thr, and d-Lys). The catalytic efficiency (the k cat/K M ratio) of the Phe54Ser TvDAAO mutant toward d-amino acids with bulky side chains (d-Lys, d-Asn, d-Phe, d-Tyr, d-Trp, and d-Leu) increased from 2.4 to 7.3 times.  相似文献   

11.
d-Alanine (d-Ala) is one of the naturally occurring d-amino acids in mammals, and its amount is known to have characteristic circadian changes. It is a candidate for a novel physiologically active substance and/or a biomarker, and the regulation mechanisms of the intrinsic amounts of d-Ala are expected to be clarified. In the present study, the effects of the possible factors controlling the d-Ala amounts, e.g., diet, d-amino acid oxidase (DAO) and intestinal bacteria, on the day–night changes in the intrinsic d-Ala amounts have been investigated using a highly sensitive and selective two-dimensional high-performance liquid chromatographic system combining a reversed-phase column and an enantioselective column. The circadian rhythm was not changed under fasting conditions. In the mice lacking d-amino acid oxidase activity (ddY/DAO- mice), clear day–night changes were still observed, suggesting that the factors controlling the d-Ala rhythm were not their food and DAO activity. On the other hand, in the germ-free mice, quite low amounts of d-Ala were detected compared with those in the control mice, indicating that the main origin of d-Ala in the mice is intestinal bacteria. Because the d-Ala amounts in the digesta containing intestinal bacteria did not show the day–night changes, the controlling factor of the circadian changes of the d-Ala amount was suggested to be the intestinal absorption.  相似文献   

12.
A reagentless d-sorbitol biosensor based on NAD-dependent d-sorbitol dehydrogenase (DSDH) immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD+ cofactor with DSDH in a sol–gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of d-sorbitol at 0.2 V with a sensitivity of 8.7?μA?mmol?1?L?cm?2 and a detection limit of 0.11 mmol?L?1. Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Figure
Reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in sol-gel/carbon nanotubes/poly(methylene green) composite  相似文献   

13.
Amino acids represent a fraction of organic matter in marine and freshwater ecosystems, and a source of carbon, nitrogen and energy. l-Amino acids are the most common enantiomers in nature because these chiral forms are used during the biosynthesis of proteins and peptide. To the contrary, the occurrence of d-amino acids is usually linked to the presence of bacteria. We investigated the distribution of l- and d-amino acids in the lacustrine environment of Terra Nova Bay, Antarctica, in order to define their natural composition in this area and to individuate a possible relationship with primary production. A simultaneous chromatographic separation of 40 l- and d-amino acids was performed using a chiral stationary phase based on teicoplainin aglycone (chirobiotic tag). The chromatographic separation was coupled to two different mass spectrometers—an LTQ-Orbitrap XL (Thermo Fisher Scientific) and an API 4000 (ABSciex)—in order to investigate their quantitative performance. High-performance liquid chromatography coupled with mass spectrometry methods were evaluated through the estimation of their linear ranges, repeatability, accuracy and detection and quantification limits. The high-resolution mass spectrometer LTQ-Orbitrap XL presented detection limits between 0.4 and 7 μg?l ?1, while the triple quadrupole mass spectrometer API 4000 achieved the best detection limits reported in the literature for the quantification of amino acids (between 4 and 200 ng?l ?1). The most sensitive method, HPLC-API 4000, was applied to lake water samples. Figure
?  相似文献   

14.
A new chiral electrochemical sensor has been successfully prepared through chemical linking l-methotrexate (l-Mtx) onto the gold electrode surface. Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the enantioselective interaction between l-Mtx and Pen enantiomers. The results showed that the l-Mtx-modified gold electrode can selectively recognize penicillamine (Pen) enantiomers using Zn(II) as central ion, and larger response signal was observed from d-Pen owing to the selective formation of Zn complexes. The interaction time between the modified electrode and Pen enantiomers containing Zn(II) was considered. And the electrochemical response of the modified electrode to a series of different concentration of Pen in the presence of Zn(II) was also monitored. In addition, the enantiomeric composition of d- and l-Pen enantiomer mixtures was monitored by measuring the current responses of the sample.  相似文献   

15.
  1. Determination of Maltose. Maltose is hydrolyzed by the enzyme α-glucosidase into glucose, which is determined by the enzymes hexokinase and glucose-6-phosphate-dehydrogenase. α-Glucosidase is specific for oligosaccharides with α-1,4 and α-1,2 bonds.
  2. Determination of Starch and Glycogen. Starch and glycogen are splitted to glucose by the enzyme amylo-glucosidase. Starch has to be dissolved before enzymatic cleavage. A comparison of different methods for preparing starch solutions is given.
  3. Determination of d- and l-Lactate. It is possible to determine d-lactate and l-lactate with the specific enzymes d-lactate-dehydrogenase and l-lactate-dehydrogenase. By different samples it is shown that no equal quantities of d- and l-lactate were found in the analyzed foods.
  相似文献   

16.
A new series of chiral derivatizing reagents (CDRs) consisting of five hydrazino dinitrophenyl (HDNP)-amino acids (CDR 1?C5) was prepared by a two-step synthesis procedure starting from 1,5-difluoro-2,4-dinitrobenzene (DFDNB). In the first step, five fluoro-dinitrophenyl (FDNP)-reagents, namely FDNP-l-Leu, FDNP-l-Val, FDNP-l-Phe, FDNP-l-Ala and FDNP-d-Phg were synthesized by substituting one of the fluorine atoms in DFDNB moiety with amino acids l-Leu, l-Val, l-Phe, l-Ala and d-Phg, respectively. In the following step, the remaining fluorine atom of the FDNP reagents was substituted with hydrazine hydrate to obtain five HDNP reagents (i.e. CDR 1?C5; HDNP-l-Leu, HDNP-l-Val, HDNP-l-Phe, HDNP-l-Ala and HDNP-d-Phg). These five CDRs were used for synthesis of diastereomers of six racemic carbonyl compounds which were resolved by high-performance liquid chromatography using C18 column and gradient eluting mixture of acetonitrile or methanol with triethylammonium phosphate buffer with UV detection at 348 nm. Microwave irradiation was used for synthesis of both the CDRs and the diastereomers. The newly synthesized CDRs were observed to be superior in comparison to their counterparts having amino acid amides as chiral auxiliaries in terms of cost effectiveness and providing better resolution of diastereomers. The method was validated for limit of detection, linearity, accuracy and precision.  相似文献   

17.
In this study, we introduced a new strategy, feeding d-glucose, to overproduce extracellular 5-aminolevulinic acid (ALA) in the recombinant Escherichia coli. We investigated that the d-glucose concentration is dependent on extracellular ALA production. The results indicated that increasing d-glucose concentration in bacteria culture enhanced final cell density and ALA yield and simultaneously decreased the activities of ALA synthase (ALAS) and ALA dehydratase (ALAD); then, the inhibitory effect of d-glucose on ALAS activity was relieved with the metabolism of d-glucose. when 4.0 g/L d-glucose was added at late exponential phase; 1.46 g/L ALA was achieved in shaking culture, which is 47% or 109% higher than the ALA yields with 30 mM levulinic acid of ALAD inhibitor or no inhibitor. In jar fermenter, final extracellular ALA concentration reached 3.1 g/L by feeding with d-glucose.  相似文献   

18.
The possibility of coupling of d-glucose and d-galactose with 4-bromo-3-methylaniline, 2,4,6-tribromoaniline, and 2-amino-5-bromopyridine was studied. The substituent in the aromatic ring was found to influence the conditions and possibility of the reaction. The yields of β-d-glucopyranosyl- and β-d-galactopyranosylamines from 4-bromo-3-methylaniline and 2-amino-5-bromopyridine were 50–65%; 2,4,6-tribromoaniline did not react at all.  相似文献   

19.
The glucose-based ligand, N-salicylidene-d-glucosamine (Sal-d-glsmN), was readily obtained by reaction of salicylaldehyde (Hsal) with the d-glucosamine hydrochloride. Ligand Sal-d-glsmN was found to be an efficient ligand in the palladium-catalyzed Suzuki and Heck C–C coupling reactions in aqueous medium under aerobic condition. It was found that the use of Sal-d-glsmN/Pd(OAc)2 system as a catalyst, aryl halides undergo Suzuki and Heck cross-couplings, respectively, with arylboronic acids and olefins to give the desired products in moderate to excellent yields.  相似文献   

20.
Treatment of the natural tri-, tetra-, and pentasaccharides, β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, α-l-Fucp-(1→2)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, and α-l-Fucp-(1→2)-[α-d-GalNAcp-(1→3)]-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, which are glucose analogs of Lex, with ammonium carbamate in aqueous methanol gave the corresponding β-glycopyranosyl amines. After their N-acylation with N-Z-glycine N-hydroxysuccinimidyl ester (Z is benzyloxycarbonyl) with subsequent hydrogenolytic removal of Z-group, corresponding N-glycyl-β-glycopyranosyl amines were obtained in yields up to 70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号