首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New activated nanoporous carbons, produced by carbonization of mixtures of coal tar pitch and furfural with subsequent steam activation, as well as electrochemically active oxide Li4Ti5O12, prepared by thermal co-decomposition of oxalates, were tested and characterized as electrode materials for electrochemical supercapacitors. The phase composition, microstructure, surface morphology and porous structure of the materials were studied. Pure carbon electrodes as well as composite electrodes based on these materials obtained were fabricated. Two types of supercapacitor (SC) cells were assembled and subjected to charge–discharge cycling study at different current rates: (1) symmetric sandwich-type SC cells with identical activated carbon electrodes and different organic electrolytes, and (2) asymmetric hybrid SC cell composed by activated graphitized carbon as a negative electrode and activated carbon–Li4Ti5O12 oxide composite as a positive electrode, and an organic electrolyte (LiPF6–dimethyl carbonate/ethylene carbonate (DMC/EC). Four types of carbons with different specific surface area (1,000–1,600 m2 g?1) and texture parameters, as well as three types of organic electrolytes: Et4NBF4–propylene carbonate (PC), LiBF4–PC and LiPF6–DMC/EC in the symmetric SC cell, were tested and compared with each other. Capacitance value up to 70 F g?1 for the symmetric SC, depending on the electrolyte microstructure and conductivity of the carbon material used, and capacitance of about 150 F g?1 for the asymmetric SC cell, with good cycleability for both supercapacitor systems, were obtained.  相似文献   

2.
The earlier developed dynamic model of a flow-through electrode is used for studying how the variations in initial conductivity of a porous matrix κs,ini and a metal deposit affect the rate of metal deposition from an oxidant-containing solution for the direct-flow operation mode of the porous electrode. It is found that in contrast to an oxidant-free solution in which the decrease of κs,ini improves the uniformity of deposit distribution inside the porous cathode and increases the deposit final mass m f, the opposite situation is observed in the presence of an oxidant, namely, a decrease in κs,ini, under otherwise similar conditions reduces the deposit mass and leads to its specific spatial distribution. The final metal deposit is divided into two separate fragments (rear and front) with a region of low conductivity of the initial porous matrix in between. Dynamics of the current and metal redistribution within the porous electrode, the reasons for the formation and stabilization of the rear fragment of coating, the correlation between the metal deposition rate and changes in the anodic zone position and intensity are discussed. It is shown that with the appearance of a specific profile of deposit distribution, the dependence of m f on the metal conductivity develops a limit that differs considerably from the deposit final mass for an equipotential porous electrode.  相似文献   

3.
For the flow-by porous electrodes, which differ in thickness, specific surface area, solution flow rate, and a ratio between the phase conductivities, the conditions providing the limiting-current mode over the entire electrode surface at nearly 100% current efficiency are determined using the method of successive refinement of total current and profile of its distribution along the solution flow. The used values of electrode thickness L are compared with available estimates for the limiting thickness of porous electrode L lim derived for the ideal limiting-current mode and calculated using real values of the width of the limiting-current plateau of overall polarization curve, solution conductivity, and the diffusion limiting current in the zone of solution input into the electrode. It is found that these values are close to each other in all cases. The largest error of estimation of L lim does not exceed 10% indicating that it can be used for preliminary estimation of the conditions for reaching the limiting-current mode for the flow porous electrodes of this type.  相似文献   

4.
In this work four polyaniline (PANI) film electrode with different thickness were synthesized by electrochemical method on the surface of glassy carbon (GC) electrode. Four polymer films with various thicknesses from 0.5 to 11 μm were synthesized. Electropolymerization occurs in low monomer concentration. Morphology study of electrode shows that surface structure of polymers depends on film thickness. Capacitance of electrode was studied by CV and charge-discharge (CD) methods. Specific capacitance (SC) of electrodes using cyclic voltammetry were calculated 620, 247 F g–1 for thinnest and thickest polymer film, respectively. Stability of electrodes was studied during 1000 voltammogram cycles. Results show that with the increase of thickness the stability of electrodes enhanced and reach to a maximum and then decreased.  相似文献   

5.
《中国化学快报》2021,32(8):2499-2502
Microbial fuel cells(MFCs) have various potential applications.However,anode is a main bottleneck that limits electricity production performance of MFCs.Herein,we developed a novel anode based on a stainless steel cloth(SC) modified with carbon nanoparticles of Chinese ink(Cl) using polypyrrole(PPy)as a building block(PPy/Cl/SC).After modification,PPy/Cl/SC showed a 30% shorten in start-up time(36.4 ± 3.3 h vs.52.3± 1.8 h),33% increase in the maximum current(12.4 ± 1.4 mA vs.9.3± 0.95 mA),and2.3 times higher in the maximum power density of MFC(61.9 mW/m~2 vs.27.3 mW/m~2),compared to Ppy/SC.Experimental results revealed that carbon nanoparticles were able to cover SC uniformly,owing to excellent dispersibility of carbon nanoparticles in Cl.The attachment of carbon nanoparticles formed a fluffy layer on SC increased the electrochemically-active surface area by 1.9 times to 44.5 cm2.This enhanced electron transfer between the electrode and bacteria.Further,embedding carbon nanoparticles into the PPy layer significantly improved biocompatibility as well as changed functional group contents,which were bene ficial to bacteria adhesion on electrodes.Taking adva ntage of high mechanical strength and good conductivity,a large-size PPy/Cl/SC was successfully prepared(50×60 cm~2)demonstrating a promising potential in practical applications.This simple fabrication strategy offers a new idea of developing low cost and scalable electrode materials for high-performance energy harvesting in MFCs.  相似文献   

6.
This review provides an overview of recent progress towards the development of flexible supercapacitors based on macroscopic carbon nanotubes-based electrodes, including one-dimensional (1D) fibers, 2D films, and 3D foams, with a focus on electrode preparation and configuration design as well as their integration with other multifunctional devices.  相似文献   

7.
Manganese oxide (MnOx) has been coated on carbon nanotubes (CNTs) and fabricated as the electrodes for electrochemical capacitors (ECs) by cathodic electrodeposition. In the process, randomly oriented CNT arrays are grown directly onto the Ti/Si substrates by chemical vapor deposition method. Potentiostatic method has been utilized for cathodic electrodeposition of MnOx onto the surface of CNTs while immersed in KMnO4 solution. The highly porosity and fibrous microstructure of the as-prepared MnOx/CNT electrode is beneficial for the electrolyte access to the active material, whereas CNTs provide improved electronic conductivity. Electrochemical investigations show that the increase in the loading mass of MnOx results in a significant reduction in the specific capacitances (SCs) of the MnOx/CNT electrodes. The MnOx/CNT electrode with MnOx loading mass of 50 μg shows a high SC of 400 F g−1 with good long cycle stability at a current density of 10 A g−1, suggesting its potential application in ECs.  相似文献   

8.
Bundle-type mutil-walled carbon nanotubes (MWCNTs) composite electrode is the first investigation and publication for the supercapacitor application. According to the thermogravimetric analysis results, as-synthesized BCNTs are considered as the electrode materials for supercapacitors and electrochemical double-layer capacitor in this study. The Brunauer–Emmett–Teller specific surface area of as-prepared bundled carbon nanotubes (BCNTs) is 95.29 m2/g given to a type III isotherm and H3 hysteresis loops. Slow scanning rates promote and enhance to achieve high Cb because of the superior conductivity of CNT bundles and one side close-layered Ni/Mg/Mo alloy inside the BCNT-based electrode and facile electron diffusivity between electrolyte and electrode. The specific capacitance Cs (1,560 F/g) is nearly equal to the maximum specific capacitance, which the BCNT-based composite electrode can actually be able to charge or fill in. The maximum energy density value is 195 Wh/kg with corresponding power density values of 0.21 kW/kg. Furthermore, the active 3D BCNTs material fabricated electrode enhances to contact the electrolyte directly and decreases the ion diffusion limitation. Electrochemical impedance spectroscopy spectrum summarized as the low-frequency area controls by mass transfer limitation, and the high-frequency area dominates by charge transfer of kinetic control. After 2,000 consecutive cyclic voltammetry sacnings and galvanostatic charge-discharge cycles at a current density of 1.67 A/g performs, the specific capacitance retentions of 3D BCNTs electrodes achieved 128.2 and 77.3%, respectively. Three-dimensional BCNT composite electrodes exhibit good conductivity and low charge transfer resistance, which is beneficial to fast charge transfer between the BCNTs electrode materials and electrolytes.  相似文献   

9.
A new nonporous Zn-based metal-organic framework (NPMOF) synthesized from a high nitrogen-containing rigid ligand was converted into porous carbon materials by direct carbonization without adding additional carbon sources. A series of NPMOF-derived porous carbons with very high N/O contents (24.1% for NPMOF-700, 20.2% for NPMOF-800, 15.1% for NPMOF-900) were prepared by adjusting the pyrolysis temperatures. The NPMOF-800 fabricated electrode exhibits a high capacitance of 220 F/g and extremely large surface area normalized capacitance of 57.7 μF/cm2 compared to other reported MOF-derived porous carbon electrodes, which could be attributed to the abundant ultramicroporosity and high N/O co-doping. More importantly, symmetric supercapacitor assembled with the MOF-derived carbon manifests prominent stability, i.e., 99.1% capacitance retention after 10,000 cycles at 1.0 A/g. This simple preparation of MOF-derived porous carbon materials not only finds an application direction for a variety of porous or even nonporous MOFs, but also opens a way for the production of porous carbon materials for superior energy storage.  相似文献   

10.
This paper describes the application of Electrochemical Quartz Crystal Admittance (EQCA) methodology to the tracking of ion adsorption on composite electrode coatings consisting of highly porous activated carbon particles and polyvinylidene difluoride (PVdF) binder rigidly attached to quartz crystal surfaces. Solutions of LiBF4 and (C2H5)4NBF4 in propylene carbonate (PC) were used in this study. At small charge densities, the effect of frequency change is nearly of gravimetric nature. We propose a new method to determine the mass contribution to the resonance frequency shift due to adsorption of ions and accompanying solvent molecules, revealing different ion/solvent population ratios for Li+, (C2H5)4?N+ and BF4 ? ions correlated to the ion solvation ability. The EQCA model applied describes the change in the frequency and in resonance peak width in terms of dimensional changes of large carbon particles (bumps) and of pseudo-uniform layers of smaller particles mixed with PVdF. The type of oscillation energy dissipation in composite carbon electrodes with PVdF binder strongly depends on non-uniform potential-induced deformations of electrode particles, and this suggests a strong effect of solvent nature on the mechanical properties of polymeric binders. EQCA may provide important information on the role of polymeric binders during cycling of composite electrodes both for supercapacitors and for Li-ion batteries electrodes.  相似文献   

11.
Anthraquinone groups were electrochemically grafted to glassy carbon (GC) electrodes via methylene linker to study the oxygen reduction reaction (ORR) in alkaline medium. Two different anthraquinone derivatives, 2-bromomethyl-anthraquinone or 2-chloromethyl-anthraquinone, were used to modify the GC electrode surface. Several modification conditions encompassing potential cycling and electrolysis at a fixed potential were employed in order to vary the surface concentration of MAQ groups (Γ MAQ) and to study the dependence of the O2 reduction behaviour on electrografting procedure. Cyclic voltammetry confirmed the presence of anthraquinone moieties attached to the GC electrode and Γ MAQ varied in the range of (0.5–2.4)?×?10?10 mol cm?2. Oxygen reduction was studied on MAQ-modified GC electrodes of various surface coverage using the rotating disc electrode (RDE) and rotating ring-disc electrode (RRDE) methods. The RDE and RRDE results of O2 reduction reveal that GC/MAQ electrodes show rather similar electrocatalytic behaviour towards the ORR yielding hydrogen peroxide as the final product.  相似文献   

12.
Solid contact (SC) ion‐selective electrodes (ISEs) have been recognized as the next generation of ISEs. In this work, the electrical conductivity and mechanical strength of a carbon nanotube (CNT) tower enable it to play the dual roles of transducer and substrate for micro SC‐ISEs. The electrode had a close to Nernstian slope of 35 mV/decade aCa2+, a linear range of four orders of magnitude of calcium ion activity (10?5.6 to 10?1.8 M), and a detection limit of 1.6×10?6 M. The simplified fabrication by a one‐step drop casting makes miniaturizing SC‐ISEs and fabricating sensor arrays easier to achieve.  相似文献   

13.
《Electroanalysis》2006,18(23):2324-2330
A tailor‐made horseradish peroxidase (HRP) bulk composite electrode was developed on the basis of pyrolyzed cobalt tetramethoxyphenylporphyrin (CoTMPP) by modifying pore size and surface area of the porous carbon material through varying amounts of iron oxalate and sulfur prior to pyrolyzation. The materials were used to immobilize horseradish peroxidase (HRP). These electrodes were characterized in terms of their efficiency to reduce hydrogen peroxide. The heterogeneous electron transfer rate constants of different materials were determined with the rotating disk electrode method and a kS (401±61 s?1) exceeding previously reported values for native HRP was found.  相似文献   

14.
A single‐step laser scribing process is used to pattern nanostructured electrodes on paper‐based devices. The facile and low‐cost technique eliminates the need for chemical reagents or controlled conditions. This process involves the use of a CO2 laser to pyrolyze the surface of the paperboard, producing a conductive porous non‐graphitizing carbon material composed of graphene sheets and composites with aluminosilicate nanoparticles. The new electrode material was extensively characterized, and it exhibits high conductivity and an enhanced active/geometric area ratio; it is thus well‐suited for electrochemical purposes. As a proof‐of‐concept, the devices were successfully employed for different analytical applications in the clinical, pharmaceutical, food, and forensic fields. The scalable and green fabrication method associated with the features of the new material is highly promising for the development of portable electrochemical devices.  相似文献   

15.
This study is essentially based on innovative electrolytes such as the organic salt N-methyl-N-butylpyrrolidinium tetrafluoroborate (Pyr14BF4) dissolved in propylene carbonate (PC) and the pure ionic liquid (N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and its solution in PC. Activated carbon cloths were used as self-standing binder-free electrodes. It is found that the presence of impurities in carbon electrodes may lead to electrolyte decomposition and electrode degradation which notably affect the electrochemical double-layer capacitor (EDLC) performance. Such processes greatly depend on the composition of both the electrode and the electrolyte, being much less significant with solvent-containing electrolytes. By raising the operation temperature to 60 °C, the EDLC performance in the ionic liquid Pyr14TFSI is notably improved due to a relevant decrease in the viscosity and increase in ionic conductivity. By contrast, the presence of impurities, e.g., Zn and Al, in the electrodes remarkably reduces the electrolyte stability and a thick layer of decomposition products completely covers the carbon fibers after cycling at high temperature. The ionic liquid in solution maintains the high maximum operative voltage of the net ionic liquid whereas its viscosity and ionic conductivity are close to those of the conventional Et4NBF4/PC. Furthermore, the presence of propylene carbonate as solvent prevents to some extent the ionic liquid degradation.  相似文献   

16.
Mesoporous carbon (m‐C) has potential applications as porous electrodes for electrochemical energy storage, but its applications have been severely limited by the inherent fragility and low electrical conductivity. A rational strategy is presented to construct m‐C into hierarchical porous structures with high flexibility by using a carbon nanotube (CNT) sponge as a three‐dimensional template, and grafting Pt nanoparticles at the m‐C surface. This method involves several controllable steps including solution deposition of a mesoporous silica (m‐SiO2) layer onto CNTs, chemical vapor deposition of acetylene, and etching of m‐SiO2, resulting in a CNT@m‐C core–shell or a CNT@m‐C@Pt core–shell hybrid structure after Pt adsorption. The underlying CNT network provides a robust yet flexible support and a high electrical conductivity, whereas the m‐C provides large surface area, and the Pt nanoparticles improves interfacial electron and ion diffusion. Consequently, specific capacitances of 203 and 311 F g?1 have been achieved in these CNT@m‐C and CNT@m‐C@Pt sponges as supercapacitor electrodes, respectively, which can retain 96 % of original capacitance under large degree compression.  相似文献   

17.
静电纺丝制备多孔碳纳米纤维及其电化学电容行为   总被引:2,自引:0,他引:2  
采用静电纺丝技术,以聚丙烯腈(PAN)/醋酸锌为前驱体制备复合纳米纤维,随后经碳化、酸化获得多孔碳纳米纤维.扫描电子显微镜(SEM)观察发现,碳纳米纤维表面分布大量孔洞.N2吸脱附等温曲线(BET)测试材料比表面积达413m2·g-1.循环伏安法(CV)和恒流充放电(CP)性能测试表明:多孔碳纳米纤维具有较好的电化学性能,在1A·g-1的电流密度下比电容达275F·g-1.相比碳纳米纤维比容量提高了162%.  相似文献   

18.
《中国化学快报》2023,34(4):107500
Recently, MAX phases show great potential in lithium-ion uptake due to their excellent electrical conductivity and unique lamellar-structure accommodating lithium ions. However, the reports about MAX electrodes for lithium-ion battery up to now are relatively low. Herein we report the preparation of surface oxygen-deficient Ti2SC with abundant oxygen vacancies by a facile surface engineering method. When using as a lithium storage anode, this oxygen-deficient Ti2SC delivers a high capacity of 350 mAh/g at a current density of 400 mA/g as well as excellent rate performance, doubling the capacity compared to that of Ti2SC without oxygen vacancies. Confirmed by electrochemical impedance spectroscopy (EIS) and kinetic mechanism analyses, after reducing surface oxides and generation of oxygen vacancies, the as-received Ti2SC exhibits higher electrical conductivity and faster lithium ion diffusion. Thus this work offers a facial and effective strategy of optimizing the surface structure of MAX phases, further to achieve an enhanced lithium-ion uptake for lithium-ion batteries or capacitors.  相似文献   

19.
Waste wood-dust of Dalbergia sisoo (Sisau) is presented, as a novel, low-cost, renewable, and sustainable source of agro-waste for the production of a highly porous activated carbon electrodes (Ds-electrodes) for supercapacitor. Ds-electrode was initially tested as supercapacitor electrode, which showed a lesser specific capacitance of 104.4 Fg?1. Therefore, hybrid-composite-electrodes (HCEs) were fabricated by adopting the nanostructured “manganese IV oxide (MnO2)-activated carbon (Ds) composite” in various ratios as the core electrode materials. The HCEs was prepared via a simple facile mechanical mixing method and polyvinylidine fluoride (PVDF) polymeric solution was used as the electrode material binder. The experimental results showed that the 1:1 Ds: MnO2 composite displayed highest specific capacitance of 300.2 Fg?1, capacity retention of 96.3 % after 1000 cycles, 16.3 WhKg?1 of specific energy density at power density of 148.2 WKg?1 and low equivalent series resistance (ESR) value of 0.41 Ω at equivalent (1:1, Ds:MnO2) loading of MnO2 to Ds. It is clear that the equivalent (1:1) concentration of MnO2 has improved the capacitive performance of the composite via pseudocapacitance charge storage mechanism as well as the enhancement on the specific surface area of the electrode. However, further increasing of the MnO2 content (1:2, Ds:MnO2) in the electrode was found to distort the capacitive performances and deteriorate the specific surface area of the electrode, mainly due to the aggregation of the MnO2 particles within the composite.  相似文献   

20.
The electrochemical reduction of three common insecticides such as cypermethrin (CYP), deltamethrin (DEL) and fenvalerate (FEN) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNT‐GCE), polyaniline (herein called as modifier M1) and polypyrrole (herein called as modifier M2) deposited MWCNT/GCE using cyclic voltammetry. Influences of pH, scan rate, and concentration were studied. The surface morphology of the modified film was characterized by scanning electron microscopy (SEM) and X‐ray diffraction analysis (XRD). A systematic study of the experimental parameters that affect differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived at. The calibration plots were linear over the insecticide's concentration range 0.1–100 mg L?1 and 0.05–100 mg L?1 for all the three insecticides at MWCNT‐GCE and MWCNT(M1)‐GCE respectively. The MWCNT(M2)‐GCE performed well among the three electrode systems and the determination range obtained was 0.01–100 mg L?1 for CYP, DEL and FEN. The limit of detection (LOD) was 0.35 μg L?1, 0.9 μg L?1 and 0.1 μg L?1 for CYP, DEL and FEN respectively on MWCNT(M2)‐GCE modified system. Suitability of this method for the trace determination of insecticide in spiked soil sample was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号