首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let q be a prime and A a finite q-group of exponent q acting by automorphisms on a finite \(q'\)-group G. Assume that A has order at least \(q^3\). We show that if \(\gamma _{\infty } (C_{G}(a))\) has order at most m for any \(a \in A^{\#}\), then the order of \(\gamma _{\infty } (G)\) is bounded solely in terms of m and q. If \(\gamma _{\infty } (C_{G}(a))\) has rank at most r for any \(a \in A^{\#}\), then the rank of \(\gamma _{\infty } (G)\) is bounded solely in terms of r and q.  相似文献   

2.
We provide a streamlined construction of the Friedrichs extension of a densely-defined self-adjoint and semibounded operator A on a Hilbert space \(\mathcal {H}\), by means of a symmetric pair of operators. A symmetric pair is comprised of densely defined operators \(J: \mathcal {H}_1 \rightarrow \mathcal {H}_2\) and \(K: \mathcal {H}_2 \rightarrow \mathcal {H}_1\) which are compatible in a certain sense. With the appropriate definitions of \(\mathcal {H}_1\) and J in terms of A and \(\mathcal {H}\), we show that \((\textit{JJ}^\star )^{-1}\) is the Friedrichs extension of A. Furthermore, we use related ideas (including the notion of unbounded containment) to construct a generalization of the construction of the Krein extension of A as laid out in a previous paper of the authors. These results are applied to the study of the graph Laplacian on infinite networks, in relation to the Hilbert spaces \(\ell ^2(G)\) and \(\mathcal {H}_{\mathcal {E}}\) (the energy space).  相似文献   

3.
In this paper, we show that for a positive operator A on a Hilbert \(C^*\)-module \( \mathscr {E} \), the range \( \mathscr {R}(A) \) of A is closed if and only if \( \mathscr {R}(A^\alpha ) \) is closed for all \(\alpha \in (0,1)\cup (1,+\,\infty )\), and this occurs if and only if \( \mathscr {R}(A)=\mathscr {R}(A^\alpha ) \) for all \(\alpha \in (0,1)\cup (1,+\,\infty )\). As an application, we prove that for an adjontable operator A if \(\mathscr {R}(A)\) is nonclosed, then \(\dim \left( \overline{\mathscr {R}(A)}/\mathscr {R}(A)\right) =+\,\infty \). Finally, we show that for an adjointable operator A if \( \overline{\mathscr {R}(A^*) } \) is orthogonally complemented in \( \mathscr {E} \), then under certain coditions there exists an idempotent C and a unique operator X such that \( XAX=X, AXA=CA, AX=C \) and \( XA=P_{A^*} \), where \( P_{A^*} \) is the orthogonal projection of \( \mathscr {E} \) onto \( \overline{\mathscr {R}(A^*)}\).  相似文献   

4.
Let A be an \((m \times n)\) integral matrix, and let \(P=\{ x :A x \le b\}\) be an n-dimensional polytope. The width of P is defined as \( w(P)=min\{ x\in \mathbb {Z}^n{\setminus }\{0\} :max_{x \in P} x^\top u - min_{x \in P} x^\top v \}\). Let \(\varDelta (A)\) and \(\delta (A)\) denote the greatest and the smallest absolute values of a determinant among all \(r(A) \times r(A)\) sub-matrices of A, where r(A) is the rank of the matrix A. We prove that if every \(r(A) \times r(A)\) sub-matrix of A has a determinant equal to \(\pm \varDelta (A)\) or 0 and \(w(P)\ge (\varDelta (A)-1)(n+1)\), then P contains n affine independent integer points. Additionally, we present similar results for the case of k-modular matrices. The matrix A is called totally k-modular if every square sub-matrix of A has a determinant in the set \(\{0,\, \pm k^r :r \in \mathbb {N} \}\). When P is a simplex and \(w(P)\ge \delta (A)-1\), we describe a polynomial time algorithm for finding an integer point in P.  相似文献   

5.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

6.
In this paper, we study the torsion subgroup and rank of elliptic curves for the subfamilies of \(E_{m,p} : y^2=x^3-m^2x+p^2\), where m is a positive integer and p is a prime. We prove that for any prime p, the torsion subgroup of \(E_{m,p}(\mathbb {Q})\) is trivial for both the cases {\(m\ge 1\), \(m\not \equiv 0\pmod 3\)} and {\(m\ge 1\), \(m \equiv 0 \pmod 3\), with \(gcd(m,p)=1\)}. We also show that given any odd prime p and for any positive integer m with \(m\not \equiv 0\pmod 3\) and \(m\equiv 2\pmod {32}\), the lower bound for the rank of \(E_{m,p}(\mathbb {Q})\) is 2. Finally, we find curves of rank 9 in this family.  相似文献   

7.
Let K be a compact set in \( {{\mathbb R}^n} \). For \( 1 \leqslant p \leqslant \infty \), the Bernstein space \( B_K^p \) is the Banach space of all functions \( f \in {L^p}\left( {{{\mathbb R}^n}} \right) \)such that their Fourier transform in a distributional sense is supported on K. If \( f \in B_K^p \), then f is continuous on \( {{\mathbb R}^n} \) and has an extension onto the complex space \( {{\mathbb C}^n} \) to an entire function of exponential type K. We study the approximation of functions in \( B_K^p \) by finite τ -periodic exponential sums of the form
$ \sum\limits_m {{c_m}{e^{2\pi {\text{i}}\left( {x,m} \right)/\tau }}} $
in the \( {L^p}\left( {\tau {{\left[ { - 1/2,1/2} \right]}^n}} \right) \)-norm as τ → ∞ when K is a polytope in \( {{\mathbb R}^n} \).
  相似文献   

8.
Let M be an invariant subspace of \(H^2\) over the bidisk. Associated with M, we have the fringe operator \(F^M_z\) on \(M\ominus w M\). For \(A\subset H^2\), let [A] denote the smallest invariant subspace containing A. Assume that \(F^M_z\) is Fredholm. If h is a bounded analytic function on \(\mathbb {D}^2\) satisfying \(h(0,0)\not =0\), then \(F^{[h M]}_z\) is Fredholm and \(\mathrm{ind}\,F^{[h M]}_z=\mathrm{ind}\,F^M_z\).  相似文献   

9.
Given a simple digraph D on n vertices (with \(n\ge 2\)), there is a natural construction of a semigroup of transformations \(\langle D\rangle \). For any edge (ab) of D, let \(a\rightarrow b\) be the idempotent of rank \(n-1\) mapping a to b and fixing all vertices other than a; then, define \(\langle D\rangle \) to be the semigroup generated by \(a \rightarrow b\) for all \((a,b) \in E(D)\). For \(\alpha \in \langle D\rangle \), let \(\ell (D,\alpha )\) be the minimal length of a word in E(D) expressing \(\alpha \). It is well known that the semigroup \(\mathrm {Sing}_n\) of all transformations of rank at most \(n-1\) is generated by its idempotents of rank \(n-1\). When \(D=K_n\) is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate \(\ell (K_n,\alpha )\), for any \(\alpha \in \langle K_n\rangle = \mathrm {Sing}_n\); however, no analogous non-trivial results are known when \(D \ne K_n\). In this paper, we characterise all simple digraphs D such that either \(\ell (D,\alpha )\) is equal to Howie–Iwahori’s formula for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {fix}(\alpha )\) for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {rk}(\alpha )\) for all \(\alpha \in \langle D\rangle \). We also obtain bounds for \(\ell (D,\alpha )\) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank \(n-1\) of \(\mathrm {Sing}_n\)). We finish the paper with a list of conjectures and open problems.  相似文献   

10.
Let D be a commutative domain with field of fractions K and let A be a torsion-free D-algebra such that \(A \cap K = D\). The ring of integer-valued polynomials on A with coefficients in K is \( Int _K(A) = \{f \in K[X] \mid f(A) \subseteq A\}\), which generalizes the classic ring \( Int (D) = \{f \in K[X] \mid f(D) \subseteq D\}\) of integer-valued polynomials on D. The condition on \(A \cap K\) implies that \(D[X] \subseteq Int _K(A) \subseteq Int (D)\), and we say that \( Int _K(A)\) is nontrivial if \( Int _K(A) \ne D[X]\). For any integral domain D, we prove that if A is finitely generated as a D-module, then \( Int _K(A)\) is nontrivial if and only if \( Int (D)\) is nontrivial. When A is not necessarily finitely generated but D is Dedekind, we provide necessary and sufficient conditions for \( Int _K(A)\) to be nontrivial. These conditions also allow us to prove that, for D Dedekind, the domain \( Int _K(A)\) has Krull dimension 2.  相似文献   

11.
For a field F and a family of central simple F-algebras we prove that there exists a regular field extension E/F preserving indices of F-algebras such that all the algebras from the family are cyclic after scalar extension by E. Let \( \mathcal{A} \) be a central simple algebra over a field F of degree n with a primitive nth root of unity ρ n . We construct a quasi-affine F-variety Symb(\( \mathcal{A} \)) such that for a field extension L/F Symb(\( \mathcal{A} \)) has an L-rational point if and only if \( \mathcal{A}{ \otimes_F}L \) is a symbol algebra. Let \( \mathcal{A} \) be a central simple algebra over a field F of degree n and K/F be a cyclic field extension of degree n. We construct a quasi-affine F-variety C(\( \mathcal{A} \) ,K) such that, for a field extension L/F with the property [KL : L] = [K : F], the variety C(\( \mathcal{A} \) ,K) has an L-rational point if and only if KL is a subfield of \( \mathcal{A}{ \otimes_F}L \).  相似文献   

12.
The aim of paper is to give some results, that prepare for studying the problem on cross theorems for separately \((\cdot , W)\)-meromorphic functions. Some general versions of extension theorem of Levi type are extended to the classes of meromorphic functions f on \(D \times (\Delta _r {\setminus } \overline{\Delta })\) with values in a locally convex space F. Here, the function f is assumed that, for each \(z \in D_*,\) the function \(f_z = f(z, \cdot )\) has a (FW)-meromorphic extension to \(\Delta _r,\) where F is either a locally (or sequentially) complete locally convex space or a Fréchet space, the space \(W \subseteq F'\) is separating (or determines boundedness), \(\Delta _r = \{\lambda \in {\mathbb C}: |\lambda | < r\}\) with \(r > 1, \Delta = \Delta _1\) and D is either a domain in \({\mathbb C}^n\) or a balanced domain in a Fréchet space containing a non-pluripolar balanced convex compact subset, \(D_*\) is dense in D.  相似文献   

13.
Let \(\texttt {R}\) be a finite commutative Frobenius ring and \(\texttt {S}\) a Galois extension of \(\texttt {R}\) of degree m. For positive integers k and \(k'\), we determine the number of free \(\texttt {S}\)-submodules \(\mathcal {B}\) of \(\texttt {S}^\ell \) with the property \(k=\texttt {rank}_\texttt {S}(\mathcal {B})\) and \(k'=\texttt {rank}_\texttt {R}(\mathcal {B}\cap \texttt {R}^\ell )\). This corrects the wrong result (Bill in Linear Algebr Appl 22:223–233, 1978, Theorem 6) which was given in the language of codes over finite fields.  相似文献   

14.
Let A be an ordered Banach algebra with a unit \(\mathbf{e}\) and a cone \(A^+\). An element p of A is said to be an order idempotent if \(p^2 = p\) and \(0 \le p\le \mathbf{e}\). An element \(a\in A^+\) is said to be irreducible if the relation \((\mathbf{e}-p)ap = 0\), where p is an order idempotent, implies \(p = 0\) or \(p = \mathbf{e}\). For an arbitrary element a of A the peripheral spectrum \(\sigma _\mathrm{per}(a)\) of a is the set \(\sigma _\mathrm{per}(a) = \{\lambda \in \sigma (a):|\lambda | = r(a)\}\), where \(\sigma (a)\) is the spectrum of a and r(a) is the spectral radius of a. We investigate properties of the peripheral spectrum of an irreducible element a. Conditions under which \(\sigma _\mathrm{per}(a)\) contains or coincides with \(r(a)H_m\), where \(H_m\) is the group of all \(m^\mathrm{th}\) roots of unity, and the spectrum \(\sigma (a)\) is invariant under rotation by the angle \(\frac{2\pi }{m}\) for some \(m\in {\mathbb N}\), are given. The correlation between these results and the existence of a cyclic form of a is considered. The conditions under which a is primitive, i.e., \(\sigma _\mathrm{per}(a) = \{r(a)\}\), are studied. The necessary assumptions on the algebra A which imply the validity of these results, are discussed. In particular, the Lotz–Schaefer axiom is introduced and finite-rank elements of A are defined. Other approaches to the notions of irreducibility and primitivity are discussed. Conditions under which the inequalities \(0 \le b < a\) imply \(r(b) < r(a)\) are studied. The closedness of the center \(A_\mathbf{e}\), i.e., of the order ideal generated by \(\mathbf{e}\) in A, is proved.  相似文献   

15.
Let C be a unital AH-algebra and A be a unital simple C*-algebras with tracial rank zero. It has been shown that two unital monomorphisms \({\phi, \psi: C\to A}\) are approximately unitarily equivalent if and only if
$ [\phi]=[\psi]\quad {\rm in}\quad KL(C,A)\quad {\rm and}\quad \tau\circ \phi=\tau\circ \psi \quad{\rm for\, all}\tau\in T(A),$
where T(A) is the tracial state space of A. In this paper we prove the following: Given \({\kappa\in KL(C,A)}\) with \({\kappa(K_0(C)_+\setminus\{0\})\subset K_0(A)_+\setminus\{0\}}\) and with κ([1 C ]) = [1 A ] and a continuous affine map \({\lambda: T(A)\to T_{\mathfrak f}(C)}\) which is compatible with κ, where \({T_{\mathfrak f}(C)}\) is the convex set of all faithful tracial states, there exists a unital monomorphism \({\phi: C\to A}\) such that
$[\phi]=\kappa\quad{\rm and}\quad \tau\circ \phi(c)=\lambda(\tau)(c)$
for all \({c\in C_{s.a.}}\) and \({\tau\in T(A).}\) Denote by \({{\rm Mon}_{au}^e(C,A)}\) the set of approximate unitary equivalence classes of unital monomorphisms. We provide a bijective map
$\Lambda: {\rm Mon}_{au}^e (C,A)\to KLT(C,A)^{++},$
where KLT(C, A)++ is the set of compatible pairs of elements in KL(C, A)++ and continuous affine maps from T(A) to \({T_{\mathfrak f}(C).}\) Moreover, we found that there are compact metric spaces X, unital simple AF-algebras A and \({\kappa\in KL(C(X), A)}\) with \({\kappa(K_0(C(X))_+\setminus\{0\})\subset K_0(A)_+\setminus\{0\}}\) for which there is no homomorphism h: C(X) → A so that [h] = κ.
  相似文献   

16.
If \(A\in B(\mathcal{X})\) is an upper triangular Banach space operator with diagonal \((A_1,A_2)\), \(A_1\) invertible and \(A_2\) quasinilpotent, then \(A_1^{-1}\oplus A_2\) satisfies either of the single-valued extension property, Dunford’s condition (C), Bishop’s property \((\beta )\), decomposition property \((\delta )\) or is decomposable if and only if \(A_1\) has the property. The operator \(A^{-1}_1\oplus 0\) is subscalar (resp., left polaroid, right polaroid) if and only if \(A_1\) is subscalar (resp., left polaroid, right polaroid). For Drazin invertible operators A, with Drazin inverse B, this implies that B satisfies any one of these properties if and only if A satisfies the property.  相似文献   

17.
Let \(n \ge r \ge s \ge 0\) be integers and \(\mathcal {F}\) a family of r-subsets of [n]. Let \(W_{r,s}^{\mathcal {F}}\) be the higher inclusion matrix of the subsets in \({{\mathcal {F}}}\) vs. the s-subsets of [n]. When \(\mathcal {F}\) consists of all r-subsets of [n], we shall simply write \(W_{r,s}\) in place of \(W_{r,s}^{\mathcal {F}}\). In this paper we prove that the rank of the higher inclusion matrix \(W_{r,s}\) over an arbitrary field K is resilient. That is, if the size of \(\mathcal {F}\) is “close” to \({n \atopwithdelims ()r}\) then \({{\mathrm{rank}}}_{K}( W_{r,s}^{\mathcal {F}}) = {{\mathrm{rank}}}_{K}(W_{r,s})\), where K is an arbitrary field. Furthermore, we prove that the rank (over a field K) of the higher inclusion matrix of r-subspaces vs. s-subspaces of an n-dimensional vector space over \({\mathbb {F}}_q\) is also resilient if \(\mathrm{char}(K)\) is coprime to q.  相似文献   

18.
We study the typical behaviour of the size of the ratio set A / A for a random subset \(A\subset \{1,\dots , n\}\). For example, we prove that \(|A/A|\sim \frac{2\text {Li}_2(3/4)}{\pi ^2}n^2 \) for almost all subsets \(A\subset \{1,\dots ,n\}\). We also prove that the proportion of visible lattice points in the lattice \(A_1\times \cdots \times A_d\), where \(A_i\) is taken at random in [1, n] with \(\mathbb P(m\in A_i)=\alpha _i\) for any \(m\in [1,n]\), is asymptotic to a constant \(\mu (\alpha _1,\dots ,\alpha _d)\) that involves the polylogarithm of order d.  相似文献   

19.
Let f be a fixed holomorphic Hecke eigen cusp form of weight k for \( SL\left( {2,{\mathbb Z}} \right) \), and let \( {\mathcal U} = \left\{ {{u_j}:j \geqslant 1} \right\} \) be an orthonormal basis of Hecke–Maass cusp forms for \( SL\left( {2,{\mathbb Z}} \right) \). We prove an asymptotic formula for the twisted first moment of the Rankin–Selberg L-functions \( L\left( {s,f \otimes {u_j}} \right) \) at \( s = \frac{1}{2} \) as u j runs over \( {\mathcal U} \). It follows that f is uniquely determined by the central values of the family of Rankin–Selberg L-functions \( \left\{ {L\left( {s,f \otimes {u_j}} \right):{u_j} \in {\mathcal U}} \right\} \).  相似文献   

20.
Let A and B be two Banach function algebras and p a two variable polynomial \(p(z,w)=zw+az+bw+c\), (\(a,b,c\in {\mathbb {C}}\)). We characterize the general form of a surjection \(T: A \longrightarrow B\) which satisfies \(\mathrm{Ran}_\pi (p(Tf,Tg))\cap \mathrm{Ran}_\pi (p(f,g))\ne \emptyset , (f,g\in A\) and \(c\ne ab)\), where \(\mathrm{Ran}_\pi (f)\) is the peripheral range of f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号