首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let A and B be non-negative self-adjoint operators in a separable Hilbert space such that their form sum C is densely defined. It is shown that the Trotter product formula holds for imaginary parameter values in the L 2-norm, that is, one has
$ \lim_{n\to+\infty} \int\limits^T_{-T} \left\|\left(e^{-itA/n}e^{-itB/n} \right)^nh - e^{-itC}h\right\|^2dt = 0 $
for each element h of the Hilbert space and any T > 0. This result is extended to the class of holomorphic Kato functions, to which the exponential function belongs. Moreover, for a class of admissible functions: \({\phi(\cdot),\psi(\cdot):{\mathbb R}_+ \longrightarrow {\mathbb C}}\), where \({{\mathbb R}_+ := [0,\infty)}\), satisfying in addition \({{\Re{\rm e}}\,(\phi(y))\ge 0, {\Im{\rm m}}\,(\phi(y) \le 0}\) and \({{\Im{\rm m}}\,(\psi(y)) \le 0}\) for \({y \in {\mathbb R}_+}\), we prove that
$ \,\mbox{\rm s-}\hspace{-2pt} \lim_{n\to\infty}(\phi(tA/n)\psi(tB/n))^n = e^{-itC} $
holds true uniformly on \({[0,T]\ni t}\) for any T > 0.
  相似文献   

2.
In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces \(B_{t_{1}}^{\frac{m}{t_{1}},q_{1}}(\mathbb {R}^m) \times B_{t_{2}}^{\frac{m}{t_{2}},q_{2}}(\mathbb {R}^m)\), for \(t_1,t_2>0\), \(q_1 \le 1\) and \(q_2 \le 1\). Contrary to product spaces \(B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \times B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \) with \(s_{1} > \frac{m}{t_{1}}\) and \(s_{2} >\frac{m}{t_{2}}\) (Ben Slimane in Mediterr J Math, 13(4):1513–1533, 2016) and \((B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \cap C^{\gamma _{1}}(\mathbb {R}^m)) \times (B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \cap C^{\gamma _{2}}(\mathbb {R}^m)\) with \(0<\gamma _{1}<s_{1}<\frac{m}{t_{1}}\) and \(0<\gamma _{2}<s_{2}<\frac{m}{t_{2}}\) (Ben Abid et al. in Mediterr J Math, 13(6):5093–5118, 2016), all pairs of functions in the obtained generic set are not uniform Hölder. Nevertheless, the characterization of the upper bound of the Hölder exponent by decay conditions of local wavelet leaders suffices for our study.  相似文献   

3.
We consider the strong field asymptotics for the occurrence of zero modes of certain Weyl–Dirac operators on \({\mathbb{R}^3}\). In particular, we are interested in those operators \({\mathcal{D}_B}\) for which the associated magnetic field \({B}\) is given by pulling back a two-form \({\beta}\) from the sphere \({\mathbb{S}^2}\) to \({\mathbb{R}^3}\) using a combination of the Hopf fibration and inverse stereographic projection. If \({\int_{\mathbb{s}^2} \beta \neq 0}\), we show that
$$\sum_{0 \leq t \leq T} {\rm dim Ker} \mathcal{D}{tB}=\frac{T^2}{8\pi^2}\,\Big| \int_{\mathbb{S}^2}\beta\Big|\,\int_{\mathbb{S}^2}|{\beta}| +o(T^2)$$
as \({T\to+\infty}\). The result relies on Erd?s and Solovej’s characterisation of the spectrum of \({\mathcal{D}_{tB}}\) in terms of a family of Dirac operators on \({\mathbb{S}^2}\), together with information about the strong field localisation of the Aharonov–Casher zero modes of the latter.
  相似文献   

4.
The purpose of this work is the analysis of the solutions to the following problems related to the fractional p-Laplacian in a Lipschitzian bounded domain \({\Omega \subset \mathbb{R}^N}\),
$$\left\{\begin{array}{lll}-\int_{\mathbb{R}^N}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|x-y|^{\alpha p}}\;dy=f(x,u)\;\;&x\in \Omega,\\ u=g(x) &x\in\mathbb{R}^N\setminus \Omega,\end{array}\right.$$
where \({\alpha\in(0,1)}\) and the exponent p goes to infinity. In particular we will analyze the cases:
  1. (i)
    \({f=f(x).}\)
     
  2. (ii)
    \({f=f(u)=|u|^{\theta(p)-1} u \, {\rm with} \, 0 < \theta(p) < p -1 \, {\rm and} \, \lim_{p\to\infty}\frac{\theta(p)}{p-1}=\Theta < 1 \, {\rm with} \, g \geq 0.}\)
     
We show the convergence of the solutions to certain limit as \({p\to\infty}\) and identify the limit equation. In both cases, the limit problem is closely related to the Infinity Fractional Laplacian:
$$\mathcal{L}_\infty v(x)=\mathcal{L}_\infty^+ v(x)+\mathcal{L}_\infty^- v(x),$$
where
$$\mathcal{L}_\infty^+ v(x)=\sup_{y\in\mathbb{R}^N}\frac{v(y)-v(x)}{|y-x|^\alpha}, \quad \mathcal{L}_\infty^- v(x)=\inf_{y\in\mathbb{R}^N}\frac{v(y)-v(x)}{|y-x|^\alpha}.$$
  相似文献   

5.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

6.
In this paper, we study the uniform Hölder continuity of the generalized Riemann function \({R_{\alpha,\beta} \,\,{\rm (with}\,\, \alpha > 1 \,\,{\rm and}\,\, \beta > 0}\)) defined by
$$R_{\alpha,\beta}(x) = \sum_{n=1}^{+\infty} \frac{\sin(\pi n^\beta x)}{n^\alpha},\quad x \in \mathbb{R},$$
using its continuous wavelet transform. In particular, we show that the exponent we find is optimal. We also analyse the behaviour of \({R_{\alpha,\beta} \,\,{\rm as}\,\, \beta}\) tends to infinity.
  相似文献   

7.
Let \({C={\rm inf} (k/n)\sum_{i=1}^n x_i(x_{i+1}+\cdots+x_{i+k})^{-1}}\), where the infimum is taken over all pairs of integers \({n\geq k\geq 1}\) and all positive \({x_1,\ldots,x_n}\), \({x_{n+i}=x_i}\). We prove that \({\ln 2 \leq C < 0.9305}\). In the definition of the constant C, the operation \({{\rm inf}_{k}\, {\rm inf}_{n}\, {\rm inf}_{x}}\) can be replaced by \({{\rm lim}_{k \to \infty}\, {\rm lim}_{n \to \infty} {\rm inf}_{x}}\).  相似文献   

8.
The paper is devoted to sharp weak type \((\infty ,\infty )\) estimates for \({\mathcal {H}}^{\mathbb {T}}\) and \({\mathcal {H}}^{\mathbb {R}}\), the Hilbert transforms on the circle and real line, respectively. Specifically, it is proved that
$$\begin{aligned} \left\| {\mathcal {H}}^{\mathbb {T}}f\right\| _{W({\mathbb {T}})}\le \Vert f\Vert _{L^\infty ({\mathbb {T}})} \end{aligned}$$
and
$$\begin{aligned} \left\| {\mathcal {H}}^{\mathbb {R}}f\right\| _{W({\mathbb {R}})}\le \Vert f\Vert _{L^\infty ({\mathbb {R}})}, \end{aligned}$$
where \(W({\mathbb {T}})\) and \(W({\mathbb {R}})\) stand for the weak-\(L^\infty \) spaces introduced by Bennett, DeVore and Sharpley. In both estimates, the constant \(1\) on the right is shown to be the best possible.
  相似文献   

9.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

10.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

11.
Given an open bounded domain \({\Omega\subset\mathbb {R}^{2m}}\) with smooth boundary, we consider a sequence \({(u_k)_{k\in\mathbb{N}}}\) of positive smooth solutions to
$\left\{\begin{array}{ll} (-\Delta)^m u_k=\lambda_k u_k e^{mu_k^2} \quad\quad\quad\quad\quad {\rm in}\,\Omega\\ u_k=\partial_\nu u_k=\cdots =\partial_\nu^{m-1} u_k=0 \quad {\rm on }\, \partial \Omega, \end{array}\right.$
where λ k → 0+. Assuming that the sequence is bounded in \({H^m_0(\Omega)}\) , we study its blow-up behavior. We show that if the sequence is not precompact, then
$\liminf_{k\to\infty}\|u_k\|^2_{H^m_0}:=\liminf_{k\to\infty}\int\limits_\Omega u_k(-\Delta)^m u_k dx\geq \Lambda_1,$
where Λ1 = (2m ? 1)!vol(S 2m ) is the total Q-curvature of S 2m .
  相似文献   

12.
First, we establish necessary and sufficient conditions for embeddings of Bessel potential spaces \({H^{\sigma}X(\mathbb R^n)}\) with order of smoothness less than one, modelled upon rearrangement invariant Banach function spaces \({X(\mathbb R^n)}\), into generalized Hölder spaces. To this end, we derive a sharp estimate of modulus of smoothness of the convolution of a function \({f\in X(\mathbb R^n)}\) with the Bessel potential kernel g σ , 0 < σ < 1. Such an estimate states that if \({g_{\sigma}}\) belongs to the associate space of X, then
$\omega(f*g_{\sigma},t)\precsim \int\limits_0^{t^n}s^{\frac{\sigma}{n}-1}f^*(s)\,ds \quad {\rm for\,all} \quad t\in(0,1) \quad {\rm and\,every}\quad f\in X(\mathbb R^n).$
Second, we characterize compact subsets of generalized Hölder spaces and then we derive necessary and sufficient conditions for compact embeddings of Bessel potential spaces \({H^{\sigma}X(\mathbb R^n)}\) into generalized Hölder spaces. We apply our results to the case when \({X(\mathbb R^n)}\) is the Lorentz–Karamata space \({L_{p,q;b}(\mathbb R^n)}\). In particular, we are able to characterize optimal embeddings of Bessel potential spaces \({H^{\sigma}L_{p,q;b}(\mathbb R^n)}\) into generalized Hölder spaces and also compact embeddings of spaces in question. Applications cover both superlimiting and limiting cases.
  相似文献   

13.
In this paper, we study the existence of solutions for the following impulsive fractional boundary-value problem:
$$\begin{aligned} {\left\{ \begin{array}{ll} - \frac{\mathrm{d}}{\mathrm{d}t} \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t)) \Big ) = \lambda u (t) + f (t, u (t)), &{} t \ne t_j, \;\;\text {a.e.}\;\; t \in [0, T],\\ \Delta \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \Big ) = I_j (u (t_j)), &{} j = 1, 2, \ldots , n,\\ u (0) = u (T) = 0, \end{array}\right. } \end{aligned}$$
where \(\alpha \in (1/2, 1]\), \(0 = t_0< t_1< t_2< \cdots< t_n< t_{n +1} = T\), \(\lambda \) is a parameter and \(f :[0, T] \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) and \(I_j : {\mathbb {R}} \rightarrow {\mathbb {R}}\), \(j = 1, \ldots , n\) are continuous functions and
$$\begin{aligned}&\Delta \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \right) \\&\quad = \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+) \\&\qquad -\, \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+)) \nonumber \\&\quad = \lim _{t \rightarrow t_j^+} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-)) \\&\quad = \lim _{t \rightarrow t_j^-} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) . \end{aligned}$$
By using critical point theory and variational methods, we give some new criteria to guarantee that the impulsive problems have at least one solution and infinitely many solutions.
  相似文献   

14.
We consider the generalized Korteweg-de Vries (gKdV) equation with the time oscillating nonlinearity:
$${\partial}_t u+{\partial}_x^3 u+ g(\omega t) {\partial}_x (|u|^{p-1}u)= 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}.$$
Under the suitable assumption on g, we show that if the nonlinear term is mass critical or supercritical i.e., \({p \geq 5}\) and \({u(0) \in \dot{H}^{s_{p}}}\), where \({s_{p} = 1/2 - 2/(p-1)}\) is a scale critical exponent, then there exists a unique global solution to (gKdV) provided that \({|\omega|}\) is sufficiently large. We also obtain the behavior of the solution to (gKdV) as \({|\omega| \to \infty}\).
  相似文献   

15.
Let \({\varphi}\) be a Musielak–Orlicz function satisfying that, for any \({(x,\,t)\in{\mathbb R}^n \times [0, \infty)}\), \({\varphi(\cdot,\,t)}\) belongs to the Muckenhoupt weight class \({A_\infty({\mathbb R}^n)}\) with the critical weight exponent \({q(\varphi) \in [1,\,\infty)}\) and \({\varphi(x,\,\cdot)}\) is an Orlicz function with uniformly lower type \({p^{-}_{\varphi}}\) and uniformly upper type \({p^+_\varphi}\) satisfying \({q(\varphi) < p^{-}_{\varphi}\le p^{+}_{\varphi} < \infty}\). In this paper, the author obtains a sharp weighted bound involving \({A_\infty}\) constant for the Hardy–Littlewood maximal operator on the Musielak–Orlicz space \({L^{\varphi}}\). This result recovers the known sharp weighted estimate established by Hytönen et al. in [J. Funct. Anal. 263:3883–3899, 2012].  相似文献   

16.
A monotonicity-type result for functions \(f\ : \ \mathbb {N}_a\rightarrow \mathbb {R}\) satisfying the sequential fractional difference inequality
$$\begin{aligned} \Delta _{1+a-\mu }^{\nu }\Delta _{a}^{\mu }f(t)\ge 0, \end{aligned}$$
for \(t\in \mathbb {N}_{2+a-\mu -\nu }\), where \(0<\mu <1\), \(0<\nu <1\), and \(1<\mu +\nu <2\), is proved, subject to the restriction that
$$\begin{aligned} \mu <2(1-\nu ). \end{aligned}$$
We demonstrate that this result is sharp in the sense that the restriction \(\mu <2(1-\nu )\) cannot be improved.
  相似文献   

17.
The goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form
$$\begin{aligned} \sum _{N\ge n_1\ge \cdots \ge n_K\ge 1}\frac{1}{b_{n_K}}\cdot \prod _{j=1}^{K-1}\frac{1}{a_{n_j}}, \end{aligned}$$
where \((K,N)\in \mathbb {N}^2\) and \(\{a_n\}_{n=1}^{\infty }\), \(\{b_n\}_{n=1}^{\infty }\) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula \(\zeta ^\star (\{2\}_K,1)=2\zeta (2K+1)\), \(K\in \mathbb {N}\). As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.
  相似文献   

18.
In this paper we study perturbed Ornstein–Uhlenbeck operators
$$\begin{aligned} \left[ \mathcal {L}_{\infty } v\right] (x)=A\triangle v(x) + \left\langle Sx,\nabla v(x)\right\rangle -B v(x),\,x\in \mathbb {R}^d,\,d\geqslant 2, \end{aligned}$$
for simultaneously diagonalizable matrices \(A,B\in \mathbb {C}^{N,N}\). The unbounded drift term is defined by a skew-symmetric matrix \(S\in \mathbb {R}^{d,d}\). Differential operators of this form appear when investigating rotating waves in time-dependent reaction diffusion systems. We prove under certain conditions that the maximal domain \(\mathcal {D}(A_p)\) of the generator \(A_p\) belonging to the Ornstein–Uhlenbeck semigroup coincides with the domain of \(\mathcal {L}_{\infty }\) in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\) given by
$$\begin{aligned} \mathcal {D}^p_{\mathrm {loc}}(\mathcal {L}_0)=\left\{ v\in W^{2,p}_{\mathrm {loc}}\cap L^p\mid A\triangle v + \left\langle S\cdot ,\nabla v\right\rangle \in L^p\right\} ,\,1<p<\infty . \end{aligned}$$
One key assumption is a new \(L^p\)-dissipativity condition
$$\begin{aligned} |z|^2\mathrm {Re}\,\left\langle w,Aw\right\rangle + (p-2)\mathrm {Re}\,\left\langle w,z\right\rangle \mathrm {Re}\,\left\langle z,Aw\right\rangle \geqslant \gamma _A |z|^2|w|^2\;\forall \,z,w\in \mathbb {C}^N \end{aligned}$$
for some \(\gamma _A>0\). The proof utilizes the following ingredients. First we show the closedness of \(\mathcal {L}_{\infty }\) in \(L^p\) and derive \(L^p\)-resolvent estimates for \(\mathcal {L}_{\infty }\). Then we prove that the Schwartz space is a core of \(A_p\) and apply an \(L^p\)-solvability result of the resolvent equation for \(A_p\). In addition, we derive \(W^{1,p}\)-resolvent estimates. Our results may be considered as extensions of earlier works by Metafune, Pallara and Vespri to the vector-valued complex case.
  相似文献   

19.
This paper is concerned with the following Kirchhoff-type equation
$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^3}|\nabla {u}|^2\mathrm {d}x\right) \triangle u+V(x)u=f(x, u), \quad x\in \mathbb {R}^{3}, \end{aligned}$$
where \(V\in \mathcal {C}(\mathbb {R}^{3}, (0,\infty ))\), \(f\in \mathcal {C}({\mathbb {R}}^{3}\times \mathbb {R}, \mathbb {R})\), V(x) and f(xt) are periodic or asymptotically periodic in x. Using weaker assumptions \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^3}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and
$$\begin{aligned}&\left[ \frac{f(x,\tau )}{\tau ^3}-\frac{f(x,t\tau )}{(t\tau )^3} \right] \mathrm {sign}(1-t) +\theta _0V(x)\frac{|1-t^2|}{(t\tau )^2}\ge 0, \quad \\&\quad \forall x\in \mathbb {R}^3,\ t>0, \ \tau \ne 0 \end{aligned}$$
with a constant \(\theta _0\in (0,1)\), instead of the common assumption \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^4}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and the usual Nehari-type monotonic condition on \(f(x,t)/|t|^3\), we establish the existence of Nehari-type ground state solutions of the above problem, which generalizes and improves the recent results of Qin et al. (Comput Math Appl 71:1524–1536, 2016) and Zhang and Zhang (J Math Anal Appl 423:1671–1692, 2015). In particular, our results unify asymptotically cubic and super-cubic nonlinearities.
  相似文献   

20.
For any \(p\in (0,\,1]\), let \(H^{\Phi _p}(\mathbb {R}^n)\) be the Musielak–Orlicz Hardy space associated with the Musielak–Orlicz growth function \(\Phi _p\), defined by setting, for any \(x\in \mathbb {R}^n\) and \(t\in [0,\,\infty )\),
$$\begin{aligned}&\Phi _{p}(x,\,t)\\&\quad := {\left\{ \begin{array}{ll} \displaystyle \frac{t}{\log {(e+t)}+[t(1+|x|)^n]^{1-p}}&{} \quad \text {when}\ n(1/p-1)\notin \mathbb N \cup \{0\},\\ \displaystyle \frac{t}{\log (e+t)+[t(1+|x|)^n]^{1-p}[\log (e+|x|)]^p}&{} \quad \text {when}\ n(1/p-1)\in \mathbb N\cup \{0\}, \end{array}\right. } \end{aligned}$$
which is the sharp target space of the bilinear decomposition of the product of the Hardy space \(H^p(\mathbb {R}^n)\) and its dual. Moreover, \(H^{\Phi _1}(\mathbb {R}^n)\) is the prototype appearing in the real-variable theory of general Musielak–Orlicz Hardy spaces. In this article, the authors find a new structure of the space \(H^{\Phi _p}(\mathbb {R}^n)\) by showing that, for any \(p\in (0,\,1]\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{\phi _0}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\) and, for any \(p\in (0,\,1)\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{1}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\), where \(H^1(\mathbb {R}^n)\) denotes the classical real Hardy space, \(H^{\phi _0}({{{\mathbb {R}}}^n})\) the Orlicz–Hardy space associated with the Orlicz function \(\phi _0(t):=t/\log (e+t)\) for any \(t\in [0,\infty )\), and \(H_{W_p}^p(\mathbb {R}^n)\) the weighted Hardy space associated with certain weight function \(W_p(x)\) that is comparable to \(\Phi _p(x,1)\) for any \(x\in \mathbb {R}^n\). As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号