首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The optimal channel assignment is an important optimization problem with applications in optical networks. This problem was formulated to the L(p, 1)-labeling of graphs by Griggs and Yeh (SIAM J Discrete Math 5:586–595, 1992). A k-L(p, 1)-labeling of a graph G is a function \(f:V(G)\rightarrow \{0,1,2,\ldots ,k\}\) such that \(|f(u)-f(v)|\ge p\) if \(d(u,v)=1\) and \(|f(u)-f(v)|\ge 1\) if \(d(u,v)=2\), where d(uv) is the distance between the two vertices u and v in the graph. Denote \(\lambda _{p,1}^l(G)= \min \{k \mid G\) has a list k-L(p, 1)-labeling\(\}\). In this paper we show upper bounds \(\lambda _{1,1}^l(G)\le \Delta +9\) and \(\lambda _{2,1}^l(G)\le \max \{\Delta +15,29\}\) for planar graphs G without 4- and 6-cycles, where \(\Delta \) is the maximum vertex degree of G. Our proofs are constructive, which can be turned to a labeling (channel assignment) method to reach the upper bounds.  相似文献   

2.
Consider a graph \(G=(V,E)\) and a vertex subset \(A \subseteq V\). A vertex v is positive-influence dominated by A if either v is in A or at least half the number of neighbors of v belong to A. For a target vertex subset \(S \subseteq V\), a vertex subset A is a positive-influence target-dominating set for target set S if every vertex in S is positive-influence dominated by A. Given a graph G and a target vertex subset S, the positive-influence target-dominating set (PITD) problem is to find the minimum positive-influence dominating set for target S. In this paper, we show two results: (1) The PITD problem has a polynomial-time \((1 + \log \lceil \frac{3}{2} \Delta \rceil )\)-approximation in general graphs where \(\Delta \) is the maximum vertex-degree of the input graph. (2) For target set S with \(|S|=\Omega (|V|)\), the PITD problem has a polynomial-time O(1)-approximation in power-law graphs.  相似文献   

3.
A vertex \(v\in V(G)\) is said to distinguish two vertices \(x,y\in V(G)\) of a nontrivial connected graph G if the distance from v to x is different from the distance from v to y. A set \(S\subset V(G)\) is a local metric generator for G if every two adjacent vertices of G are distinguished by some vertex of S. A local metric generator with the minimum cardinality is called a local metric basis for G and its cardinality, the local metric dimension of G. It is known that the problem of computing the local metric dimension of a graph is NP-Complete. In this paper we study the problem of finding exact values or bounds for the local metric dimension of strong product of graphs.  相似文献   

4.
For two given graphs \(G_1\) and \(G_2\), the Ramsey number \(R(G_1,G_2)\) is the least integer r such that for every graph G on r vertices, either G contains a \(G_1\) or \(\overline{G}\) contains a \(G_2\). In this note, we determined the Ramsey number \(R(K_{1,n},W_m)\) for even m with \(n+2\le m\le 2n-2\), where \(W_m\) is the wheel on \(m+1\) vertices, i.e., the graph obtained from a cycle \(C_m\) by adding a vertex v adjacent to all vertices of the \(C_m\).  相似文献   

5.
For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix \(U(t) = \exp (-itM)\), where t varies over the reals. Perfect state transfer occurs between vertices u and v at time \(\tau \) if the (uv)-entry of \(U(\tau )\) has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an n-vertex graph has perfect state transfer at time \(\tau \) relative to the Laplacian, then so does its complement if \(n\tau \in 2\pi {\mathbb {Z}}\). As a corollary, the join of \(\overline{K}_{2}\) with any m-vertex graph has perfect state transfer relative to the Laplacian if and only if \(m \equiv 2\pmod {4}\). This was previously known for the join of \(\overline{K}_{2}\) with a clique (Bose et al. in Int J Quant Inf 7:713–723, 2009). If a graph G has perfect state transfer at time \(\tau \) relative to the normalized Laplacian, then so does the weak product \(G \times H\) if for any normalized Laplacian eigenvalues \(\lambda \) of G and \(\mu \) of H, we have \(\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}\). As a corollary, a weak product of \(P_{3}\) with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of \(P_{3}\) has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (Godsil in Discret Math 312(1):129–147, 2011).  相似文献   

6.
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let \(\Gamma \) be a graph with vertex set V, diameter D, adjacency matrix \(\varvec{A}\), and adjacency algebra \(\mathcal{A}\). Then, \(\Gamma \) is distance mean-regular when, for a given \(u\in V\), the averages of the intersection numbers \(p_{ij}^h(u,v)=|\Gamma _i(u)\cap \Gamma _j(v)|\) (number of vertices at distance i from u and distance j from v) computed over all vertices v at a given distance \(h\in \{0,1,\ldots ,D\}\) from u, do not depend on u. In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of \(\Gamma \) and, hence, they generate a subalgebra of \(\mathcal{A}\). Some other algebras associated to distance mean-regular graphs are also characterized.  相似文献   

7.
A vertex-colored graph G is rainbow vertex connected if any two distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we prove that for a connected graph G, if \({{\rm diam}(\overline{G}) \geq 3}\), then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. Next, we obtain that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 2}\), if G is connected, then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. A total-colored path is total rainbow if its edges and internal vertices have distinct colors. A total-colored graph G is total rainbow connected if any two distinct vertices are connected by some total rainbow path. The total rainbow connection number of G, denoted by trc(G), is the smallest number of colors required to color the edges and vertices of G in order to make G total rainbow connected. In this paper, we prove that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 3}\), if G is connected, then trc\({(G) \leq 5}\), and this bound is tight. Next, a Nordhaus–Gaddum-type result for the total rainbow connection number is provided. We show that if G and \({\overline{G}}\) are both connected, then \({6 \leq {\rm trc} (G) + {\rm trc}(\overline{G}) \leq 4n - 6.}\) Examples are given to show that the lower bound is tight for \({n \geq 7}\) and n = 5. Tight lower bounds are also given for n = 4, 6.  相似文献   

8.
A cycle C in a graph G is dominating if every edge of G is incident with at least one vertex of C. For a set \(\mathcal {H}\) of connected graphs, a graph G is said to be \(\mathcal {H}\)-free if G does not contain any member of \(\mathcal {H}\) as an induced subgraph. When \(|\mathcal {H}| = 2, \mathcal {H}\) is called a forbidden pair. In this paper, we investigate the characterization of the class of the forbidden pairs guaranteeing the existence of a dominating cycle and show the following two results: (i) Every 2-connected \(\{P_{5}, K_{4}^{-}\}\)-free graph contains a longest cycle which is a dominating cycle. (ii) Every 2-connected \(\{P_{5}, W^{*}\}\)-free graph contains a longest cycle which is a dominating cycle. Here \(P_{5}\) is the path of order \(5, K_{4}^{-}\) is the graph obtained from the complete graph of order 4 by removing one edge, and \(W^{*}\) is the graph obtained from two triangles and an edge by identifying one vertex in each.  相似文献   

9.
Assign to each vertex v of the complete graph \(K_n\) on n vertices a list L(v) of colors by choosing each list independently and uniformly at random from all f(n)-subsets of a color set \([n] = \{1,\dots , n\}\), where f(n) is some integer-valued function of n. Such a list assignment L is called a random (f(n), [n])-list assignment. In this paper, we determine the asymptotic probability (as \(n \rightarrow \infty \)) of the existence of a proper coloring \(\varphi \) of \(K_n\), such that \(\varphi (v) \in L(v)\) for every vertex v of \(K_n\). We show that this property exhibits a sharp threshold at \(f(n) = \log n\). Additionally, we consider the corresponding problem for the line graph of a complete bipartite graph \(K_{m,n}\) with parts of size m and n, respectively. We show that if \(m = o(\sqrt{n})\), \(f(n) \ge 2 \log n\), and L is a random (f(n), [n])-list assignment for the line graph of \(K_{m,n}\), then with probability tending to 1, as \(n \rightarrow \infty \), there is a proper coloring of the line graph of \(K_{m,n}\) with colors from the lists.  相似文献   

10.
A digraph \({\overrightarrow{\mathcal{Pc}}(G)}\) is said to be the directed power graph on the conjugacy classes of a group G, if its vertices are the non-trivial conjugacy classes of G, and there is an arc from vertex C to C′ if and only if \({C \neq C'}\) and \({C \subseteqq {C'}^{m}}\) for some positive integer \({m > 0}\). Moreover, the simple graph \({\mathcal{Pc}(G)}\) is said to be the (undirected) power graph on the conjugacy classes of a group G if its vertices are the conjugacy classes of G and two distinct vertices C and C′ are adjacent in \({\mathcal{Pc}(G)}\) if one is a subset of a power of the other. In this paper, we find some connections between algebraic properties of some groups and properties of the associated graph.  相似文献   

11.
A set \(S\subseteq V\) is a paired-dominating set if every vertex in \(V{\setminus } S\) has at least one neighbor in S and the subgraph induced by S contains a perfect matching. The paired-domination number of a graph G, denoted by \(\gamma _{pr}(G)\), is the minimum cardinality of a paired-dominating set of G. A conjecture of Goddard and Henning says that if G is not the Petersen graph and is a connected graph of order n with minimum degree \(\delta (G)\ge 3\), then \(\gamma _{pr}(G)\le 4n/7\). In this paper, we confirm this conjecture for k-regular graphs with \(k\ge 4\).  相似文献   

12.
A graph G is called claw-o-heavy if every induced claw (\(K_{1,3}\)) of G has two end-vertices with degree sum at least |V(G)|. For a given graph SG is called S-f-heavy if for every induced subgraph H of G isomorphic to S and every pair of vertices \(u,v\in V(H)\) with \(d_H(u,v)=2,\) there holds \(\max \{d(u),d(v)\}\ge |V(G)|/2.\) In this paper, we prove that every 2-connected claw-o-heavy and \(Z_3\)-f-heavy graph is hamiltonian (with two exceptional graphs), where \(Z_3\) is the graph obtained by identifying one end-vertex of \(P_4\) (a path with 4 vertices) with one vertex of a triangle. This result gives a positive answer to a problem proposed Ning and Zhang (Discrete Math 313:1715–1725, 2013), and also implies two previous theorems of Faudree et al. and Chen et al., respectively.  相似文献   

13.
An instance of the graph-constrained max-cut (\(\mathsf {GCMC}\)) problem consists of (i) an undirected graph \(G=(V,E)\) and (ii) edge-weights \(c:{V\atopwithdelims ()2} \rightarrow \mathbb {R}_+\) on a complete undirected graph. The objective is to find a subset \(S \subseteq V\) of vertices satisfying some graph-based constraint in G that maximizes the weight \(\sum _{u\in S, v\not \in S} c_{uv}\) of edges in the cut \((S,V{\setminus } S)\). The types of graph constraints we can handle include independent set, vertex cover, dominating set and connectivity. Our main results are for the case when G is a graph with bounded treewidth, where we obtain a \(\frac{1}{2}\)-approximation algorithm. Our algorithm uses an LP relaxation based on the Sherali–Adams hierarchy. It can handle any graph constraint for which there is a dynamic program of a specific form. Using known decomposition results, these imply essentially the same approximation ratio for \(\mathsf {GCMC}\) under constraints such as independent set, dominating set and connectivity on a planar graph G.  相似文献   

14.
The induced path number \(\rho (G)\) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a path. A product Nordhaus–Gaddum-type result is a bound on the product of a parameter of a graph and its complement. Hattingh et al. (Util Math 94:275–285, 2014) showed that if G is a graph of order n, then \(\lceil \frac{n}{4} \rceil \le \rho (G) \rho (\overline{G}) \le n \lceil \frac{n}{2} \rceil \), where these bounds are best possible. It was also noted that the upper bound is achieved when either G or \(\overline{G}\) is a graph consisting of n isolated vertices. In this paper, we determine best possible upper and lower bounds for \(\rho (G) \rho (\overline{G})\) when either both G and \(\overline{G}\) are connected or neither G nor \(\overline{G}\) has isolated vertices.  相似文献   

15.
Let id(v) denote the implicit degree of a vertex v in a graph G. We define G of order n to be implicit 2-heavy if at least two of the end vertices of each induced claw have implicit degree at least \(\frac{n}{2}\). In this paper, we show that every implicit 2-heavy graph G is hamiltonian if we impose certain additional conditions on the connectivity of G or forbidden induced subgraphs. Our results extend two previous theorems of Broersma et al. (Discret Math 167–168:155–166, 1997) on the existence of Hamilton cycles in 2-heavy graphs.  相似文献   

16.
An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to the set of positive integers \({\{1, 2,\dots,q\}}\) such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. The join graph GH of the graphs G and H is the graph with \({V(G + H) = V(G) \cup V(H)}\) and \({E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) {\rm and} v \in V(H)\}}\). The complete bipartite graph K m,n is an example of join graphs and we give an antimagic labeling for \({K_{m,n}, n \geq 2m + 1}\). In this paper we also provide constructions of antimagic labelings of some complete multipartite graphs.  相似文献   

17.
We characterize the extremal structures for mixing walks on trees that start from the most advantageous vertex. Let \(G=(V,E)\) be a tree with stationary distribution \(\pi \). For a vertex \(v \in V\), let \(H(v,\pi )\) denote the expected length of an optimal stopping rule from v to \(\pi \). The best mixing time for G is \(\min _{v \in V} H(v,\pi )\). We show that among all trees with \(|V|=n\), the best mixing time is minimized uniquely by the star. For even n, the best mixing time is maximized by the uniquely path. Surprising, for odd n, the best mixing time is maximized uniquely by a path of length \(n-1\) with a single leaf adjacent to one central vertex.  相似文献   

18.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

19.
Let G be a connected graph of order \({n\ge 3}\) and size m and \({f:E(G)\to \mathbb{Z}_n}\) an edge labeling of G. Define a vertex labeling \({f': V(G)\to \mathbb{Z}_n}\) by \({f'(v)= \sum_{u\in N(v)}f(uv)}\) where the sum is computed in \({\mathbb{Z}_n}\) . If f′ is one-to-one, then f is called a modular edge-graceful labeling and G is a modular edge-graceful graph. A graph G is modular edge-graceful if G contains a modular edge-graceful spanning tree. Several classes of modular edge-graceful trees are determined. For a tree T of order n where \({n\not\equiv 2 \pmod 4}\) , it is shown that if T contains at most two even vertices or the set of even vertices of T induces a path, then T is modular edge-graceful. It is also shown that every tree of order n where \({n\not\equiv 2\pmod 4}\) having diameter at most 5 is modular edge-graceful.  相似文献   

20.
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all \(s \ge 1\), we obtain upper bounds for \({\text {reg}}(I(G)^s)\) for bipartite graphs. We then compare the properties of G and \(G'\), where \(G'\) is the graph associated with the polarization of the ideal \((I(G)^{s+1} : e_1\cdots e_s)\), where \(e_1,\cdots , e_s\) are edges of G. Using these results, we explicitly compute \({\text {reg}}(I(G)^s)\) for several subclasses of bipartite graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号