共查询到18条相似文献,搜索用时 15 毫秒
1.
Tianliang Hou 《Applicable analysis》2013,92(8):1655-1665
In this article, we analyse a posteriori error estimates of mixed finite element discretizations for linear parabolic equations. The space discretization is done using the order λ?≥?1 Raviart–Thomas mixed finite elements, whereas the time discretization is based on discontinuous Galerkin (DG) methods (r?≥?1). Using the duality argument, we derive a posteriori l ∞(L 2) error estimates for the scalar function, assuming that only the underlying mesh is static. 相似文献
2.
Optimal error estimates for the hp-version interior penalty discontinuous Galerkin finite element method 总被引:1,自引:0,他引:1
We consider the hp-version interior penalty discontinuous Galerkinfinite-element method (hp-DGFEM) for second-order linear reactiondiffusionequations. To the best of our knowledge, the sharpest knownerror bounds for the hp-DGFEM are due to Rivière et al.(1999,Comput. Geosci., 3, 337360) and Houston et al.(2002,SIAM J. Numer. Anal., 99, 21332163). These are optimalwith respect to the meshsize h but suboptimal with respect tothe polynomial degree p by half an order of p. We present improvederror bounds in the energy norm, by introducing a new functionspace framework. More specifically, assuming that the solutionsbelong element-wise to an augmented Sobolev space, we deducefully hp-optimal error bounds. 相似文献
3.
In this paper, we consider the finite element approximation of an elliptic optimal control problem. Based on an assumption on the adjoint state of the continuous problem with a small parameter, which represents a regularization of the bang-bang type control problem, we derive robust a priori error estimates for optimal control and state and a posteriori error estimate is also presented. Numerical experiments confirm our theoretical results. 相似文献
4.
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L 2(H 1) and L 2(L 2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition k n ≥ch 2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results. 相似文献
5.
Using the abstract framework of [9] we analyze a residual a posteriori error estimator for space-time finite element discretizations of quasilinear parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called -scheme, which includes the implicit and explicit Euler methods and the Crank-Nicholson scheme.
6.
Yinnian He. 《Mathematics of Computation》2005,74(251):1201-1216
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair which satisfies some approximate assumption. An optimal error estimate of the numerical velocity and pressure is provided for the fully discrete penalty finite element method when the parameters and are sufficiently small.
7.
A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0,T;L2) for concentration c,in L2(0,T;L2)for cxand L∞(0,T;L2) for velocity u are derived. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method,the nonlinearity,and the coupling of the models. Numerical experiments are performed to verify the theoretical results. Finally,we apply this method to the one-dimensional compressible miscible displacement problem and give the numerical experiments to confirm the efficiency of the scheme. 相似文献
8.
A shadowing result with applications to finite element approximation of reaction-diffusion equations
A shadowing result is formulated in such a way that it applies in the context of numerical approximations of semilinear parabolic problems. The qualitative behavior of temporally and spatially discrete finite element solutions of a reaction-diffusion system near a hyperbolic equilibrium is then studied. It is shown that any continuous trajectory is approximated by an appropriate discrete trajectory, and vice versa, as long as they remain in a sufficiently small neighborhood of the equilibrium. Error bounds of optimal order in the and norms hold uniformly over arbitrarily long time intervals.
9.
Galerkin approximations to solutions of a Cauchy-Dirichlet problem governed by the generalized porous medium equation
on bounded convex domains are considered. The range of the parameter includes the fast diffusion case . Using an Euler finite difference approximation in time, the semi-discrete solution is shown to converge to the exact solution in norm with an error controlled by for and for . For the fully discrete problem, a global convergence rate of in norm is shown for the range . For , a rate of is shown in norm.
10.
《Numerical Methods for Partial Differential Equations》2018,34(6):2316-2335
We study a new class of finite elements so‐called composite finite elements (CFEs), introduced earlier by Hackbusch and Sauter, Numer. Math., 1997; 75:447‐472, for the approximation of nonlinear parabolic equation in a nonconvex polygonal domain. A two‐scale CFE discretization is used for the space discretizations, where the coarse‐scale grid discretized the domain at an appropriate distance from the boundary and the fine‐scale grid is used to resolve the boundary. A continuous, piecewise linear CFE space is employed for the spatially semidiscrete finite element approximation and the temporal discretizations is based on modified linearized backward Euler scheme. We derive almost optimal‐order convergence in space and optimal order in time for the CFE method in the L∞(L2) norm. Numerical experiment is carried out for an L‐shaped domain to illustrate our theoretical findings. 相似文献
11.
Mingxia Li Shipeng Mao Shangyou Zhang 《Mathematical Methods in the Applied Sciences》2014,37(7):937-951
In this paper, we revisit the classical error estimates of nonconforming Crouzeix–Raviart type finite elements for the Stokes equations. By introducing some quasi‐interpolation operators and using the special properties of these nonconforming elements, it is proved that their consistency errors can be bounded by their approximation errors together with a high‐order term, especially which can be of arbitrary order provided that f in the right‐hand side is piecewise smooth enough. Furthermore, we show an interesting result that both in the energy norm and L2 norm the consistency errors are dominated by the approximation errors of their finite element spaces. As byproducts, we derive the error estimates in both energy and L2 norms under the regularity assumption ( u ,p) ∈ H 1 + s(Ω) × Hs(Ω) with any s ∈ (0,1], which fills the gap in the a priori error estimate of these nonconforming elements with low regularity . Furthermore, a robust convergence is proved with minimal regularity assumption s = 0. These results seem to be missing in the literature. Numerical tests are provided, confirming the analysis, especially the new results on the L2 convergence. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
13.
F. V. Lubyshev A. R. Manapova 《Computational Mathematics and Mathematical Physics》2007,47(3):361-380
Mathematical statements of the optimal control problems for quasilinear elliptic equations with the controls in the variable coefficients of the equation of state are considered. Both local and integral constraints on the controls are considered. The objective functionals correspond to the optimization with respect to a certain number of quality indexes. Finite difference approximations of optimization problems are constructed, and estimates of the approximation error with respect to the state and to the objective functional are established. The weak convergence in control is proved. The approximations are regularized after Tikhonov. Interesting examples of some applied optimization problems that naturally lead to the nonlinear optimal control problems examined in this paper are considered. 相似文献
14.
In this paper, we develop a new discontinuous Galerkin (DG) finite element method for solving time dependent partial differential equations (PDEs) with higher order spatial derivatives. Unlike the traditional local discontinuous Galerkin (LDG) method, the method in this paper can be applied without introducing any auxiliary variables or rewriting the original equation into a larger system. Stability is ensured by a careful choice of interface numerical fluxes. The method can be designed for quite general nonlinear PDEs and we prove stability and give error estimates for a few representative classes of PDEs up to fifth order. Numerical examples show that our scheme attains the optimal -th order of accuracy when using piecewise -th degree polynomials, under the condition that is greater than or equal to the order of the equation.
15.
《Numerical Methods for Partial Differential Equations》2018,34(1):97-120
The solutions of elliptic problems with a Dirac measure right‐hand side are not in dimension and therefore the convergence of the finite element solutions is suboptimal in the ‐norm. In this article, we address the numerical analysis of the finite element method for the Laplace equation with Dirac source term: we consider, in dimension 3, the Dirac measure along a curve and, in dimension 2, the punctual Dirac measure. The study of this problem is motivated by the use of the Dirac measure as a reduced model in physical problems, for which high accuracy of the finite element method at the singularity is not required. We show a quasioptimal convergence in the ‐norm, for on subdomains which exclude the singularity; in the particular case of Lagrange finite elements, an optimal convergence in ‐norm is shown on a family of quasiuniform meshes. Our results are obtained using local Nitsche and Schatz‐type error estimates, a weak version of Aubin‐Nitsche duality lemma and a discrete inf‐sup condition. These theoretical results are confirmed by numerical illustrations. 相似文献
16.
In this paper, we are concerned with mortar edge element methods for solving three-dimensional Maxwell's equations. A new type of Lagrange multiplier space is introduced to impose the weak continuity of the tangential components of the edge element solutions across the interfaces between neighboring subdomains. The mortar edge element method is shown to have nearly optimal convergence under some natural regularity assumptions when nested triangulations are assumed on the interfaces. A generalized edge element interpolation is introduced which plays a crucial role in establishing the nearly optimal convergence. The theoretically predicted convergence is confirmed by numerical experiments.
17.
18.
N. S. Bakhvalov A. V. Knyazev R. R. Parashkevov 《Numerical Linear Algebra with Applications》2002,9(2):115-139
We prove extension theorems in the norms described by Stokes and Lamé operators for the three‐dimensional case with periodic boundary conditions. For the Lamé equations, we show that the extension theorem holds for nearly incompressible media, but may fail in the opposite limit, i.e. for case of absolutely compressible media. We study carefully the latter case and associate it with the Cosserat problem. Extension theorems serve as an important tool in many applications, e.g. in domain decomposition and fictitious domain methods, and in analysis of finite element methods. We consider an application of established extension theorems to an efficient iterative solution technique for the isotropic linear elasticity equations for nearly incompressible media and for the Stokes equations with highly discontinuous coefficients. The iterative method involves a special choice for an initial guess and a preconditioner based on solving a constant coefficient problem. Such preconditioner allows the use of well‐known fast algorithms for preconditioning. Under some natural assumptions on smoothness and topological properties of subdomains with small coefficients, we prove convergence of the simplest Richardson method uniform in the jump of coefficients. For the Lamé equations, the convergence is also uniform in the incompressible limit. Our preliminary numerical results for two‐dimensional diffusion problems show fast convergence uniform in the jump and in the mesh size parameter. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献