首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let G be a finite group with identity element 1, and S be a subset of G such that ${1 \notin S}$ and S = S ?1. The Cayley graph Cay(G, S) has vertex set G, and x, y in G are adjacent if and only if ${xy^{-1} \in S}$ . In this paper we classify the connected, arc-transitive Cayley graphs ${{\rm Cay}(D_{2p^n}, S),}$ where ${D_{2p^n}}$ is the dihedral group of order 2p n , p is an odd prime.  相似文献   

2.
Let D be a nontrivial 2-(v, k, 3) symmetric design (triplane) and let G≤Aut(D) be flag-transitive and point-primitive. In this paper, we prove that if G is an affine group, then G≤AΓL1(q), where q is some power of a prime p and p≥5.  相似文献   

3.
Letp be a prime number ≡ 3 mod 4,G p the unit group of ?/p?, andg a generator ofG p. Letq be an odd divisor ofp - 1 andG p 2q = {t 2q;tG pthe subgroup of index2q inG p. The groupG p 2 / p 2q consists of the classes \(\bar g^{2j} \) ,j = 0,...,q – 1. In this paper we study the ’excesses’ of the classes \(\bar g^{2j} \) in {l,...,(p–l)/2}, i.e., the numbers \(\Phi _j = \left| {\left\{ {k;1 \leqslant k \leqslant \left( {p - 1} \right)/2,\bar k \in \bar g^{2j} } \right\}} \right| - \left| {\left\{ {k;\left( {p - 1} \right)/2 \leqslant k \leqslant p - 1,\bar k \in \bar g^{2j} } \right\}} \right|\) ,j = 0.....q — 1. First we express therelative class number h 2q of the subfieldK 2q? ?(e2#x03C0;i/p ) of degree [K 2q: ?] =2q in terms of these excesses. We use this formula to establish certaincongruences for the Фj. E.g., ifq ∈ {3,5,11}, each number Фj is congruent modulo 4 to each other iff 2 dividesh 2q - . Finally we study thevariance of the excesses, i.e., the number \(\sigma ^2 = ((\Phi _0 - \hat \Phi )^2 + \ldots + (\Phi _{q - 1} - \hat \Phi )^2 )/(q - 1)\) , where \(\hat \Phi \) is the mean value of the numbers Фj. We obtain an explicit lower bound for σ2 in terms ofh 2q - /h 2 - . Moreover, we show that log σ2 is asymptotically equal to 21og(h 2q - h 2 - )/(q - 1) forp→∞. Three tables illustrate the results.  相似文献   

4.
Let G be the group of projectivities stabilizing a unital $\mathcal{U}$ in PG(2,q 2). In?this paper, we prove that $\mathcal{U}$ is a classical unital if and only if there are two points in $\mathcal{U}$ such that the stabilizer of these two points in G has order?q 2?1.  相似文献   

5.
We determine all connected normal edge-transitive Cayley graphs on non-abelian groups with order 4p,where p is a prime number.As a consequence we prove if |G|=2δp,δ=0,1,2 and p prime,then Γ=Cay(G,S) is a connected normal 1/2 arc-transitive Cayley graph only if G=F4p,where S is an inverse closed generating subset of G which does not contain the identity element of G and F 4p is a group with presentation F4p = a,b|ap=b4=1,b-1ab=aλ,where λ2≡-1(mod p).  相似文献   

6.
Let G be the group generated by δ of finite order n and let a and b be integers such that G is generated by δ a and δ b . We write ${\Sigma_{a,b}^n}$ for the set of groupoid identities that are satisfied in the group ring ${\mathbb{Z}[G]}$ when the binary operation is δ a x + δ b y. For every positive integer n, we show that ${\Sigma_{1,1}^n}$ and ${\Sigma_{0,1}^n}$ are finitely based. When n is not a multiple of 6, we give a finite basis for ${\Sigma_{n-1,1}^n}$ .  相似文献   

7.
Every subfield $ \mathbb{K} $ (φ) of the field of rational fractions $ \mathbb{K} $ (x 1,..., x n ) is contained in a unique maximal subfield of the form $ \mathbb{K} $ (ω). The element ω is said to be generating for the element φ. A subfield of $ \mathbb{K} $ (x 1,..., x n ) is said to be saturated if, together with every its element, the subfield also contains the generating element. In the paper, the saturation property is studied for the subfields of invariants $ \mathbb{K} $ (x 1,..., x n ) G of a finite group G of automorphisms of the field $ \mathbb{K} $ (x 1..., x n ).  相似文献   

8.
Let ${\mathcal L(r) = \sum_{n=0}^\infty a_nr^{\lambda_n}}$ be a lacunary series converging for 0 <  r < 1, with coefficients in a quasinormed space. It is proved that $$\int_0^1 F(1-r,\|\mathcal L(r)\|)(1-r)^{-1}\,{\rm d}r < \infty $$ if and only if $$ \sum_{n=0}^\infty F(1/\lambda_n,\|a_n\|) < \infty, $$ where F is a “normal function” of two variables. In the case when p ≥ 1 and F(x, y) =  x y p , this reduces to a theorem of Gurariy and Matsaev. As an application we prove that if ${f(r\zeta) = \sum_{n=0}^\infty r^{\lambda_n}f_{\lambda_n}(\zeta)}$ is a function harmonic in the unit ball of ${\mathbb R^N,}$ then $$\int_0^1M_p^q(r,f)(1-r)^{q\alpha-1} \,{\rm d}r <\infty\quad (p,\,q,\,\alpha >0 ) $$ if and only if $$\sum_{n=0}^\infty \|f_{\lambda_n} \|^q_{L^p(\partial B_N)}(1/\lambda_n)^{q\alpha} <\infty. $$   相似文献   

9.
In this paper we establish existence of solutions of singular boundary value problem ?(p(x)y (x))=q(x)f(x,y,py′) for 0<xb and $\lim_{x\rightarrow0^{+}}p(x)y^{\prime}(x)=0$ , α 1 y(b)+β 1 p(b)y (b)=γ 1 with p(0)=0 and q(x) is allowed to have integrable discontinuity at x=0. So the problem may be doubly singular. Here we consider $\lim_{x\rightarrow0^{+}}\frac{q(x)}{p'(x)}\neq0$ therefore $\lim_{x\rightarrow0^{+}}p(x)y'(x)=0$ does not imply y′(0)=0 unless $\lim_{x\rightarrow0^{+}}f(x,y(x),p(x)y'(x))=0$ .  相似文献   

10.
Let g(x)?=?x n ?+?a n-1 x n-1?+?. . .?+?a 0 be an irreducible polynomial over ${\mathbb{F}_q}$ . Varshamov proved that for a?=?1 the composite polynomial g(x p ?ax?b) is irreducible over ${\mathbb{F}_q}$ if and only if ${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})\neq 0}$ . In this paper, we explicitly determine the factorization of the composite polynomial for the case a?=?1 and ${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})= 0}$ and for the case a?≠ 0, 1. A recursive construction of irreducible polynomials basing on this composition and a construction with the form ${g(x^{r^kp}-x^{r^k})}$ are also presented. Moreover, Cohen’s method of composing irreducible polynomials and linear fractions are considered, and we show a large number of irreducible polynomials can be obtained from a given irreducible polynomial of degree n provided that gcd(n, q 3 ? q)?=?1.  相似文献   

11.
For G a group, X a subset of G and π a set of positive integers we define a graph ${\mathcal{C}_{\pi}(G,X)}$ whose vertex set is X with ${x,y \in X}$ joined by an edge provided x ≠ y and the order of xy is in π. Here we investigate ${\mathcal{C}_{\pi}(G,X)}$ when G is a finite symmetric group and X is a G-conjugacy class of elements of order p, p a prime.  相似文献   

12.
Romain Tessera 《Positivity》2012,16(4):633-640
We study the L p -distortion of finite quotients of amenable groups. In particular, for every ${2\leq p < \infty}$ , we prove that the ? p -distortions of the groups ${C_2\wr C_n}$ and ${C_{2^n}\rtimes C_n}$ are in ${\Theta((\log n)^{1/p}),}$ and that the ? p -distortion of ${C_n^2 \rtimes_A \mathbf{Z}}$ , where A is the matrix ${{\left({\small\begin{array}{cc}2 & 1 \\ 1 & 1 \end{array}} \right)}}$ is in ${\Theta((\log \log n)^{1/p}).}$   相似文献   

13.
14.
In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z20} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.  相似文献   

15.
Let \(\bar B^* \) be a separable reduced (abelian)p-group which is torsion complete. We ask whether for \(G \subseteq \bar B^* \) there is \(H \subseteq _{pr} \bar B^* ,H[p] = G[p]\) ,H[p]=G[p],H not isomorphic toG. IfG is the sum of cyclic groups or is torsion complete, the answer is easily no. For otherG, we prove that the answer is yes assuming G.C.H. Even without G.C.H. the answer is yes if the density character ofG is equal to Min n|p nG|, i.e., $$\mathop {Min}\limits_{n< \omega } |p^n G| = \mathop {Min}\limits_m \mathop \Sigma \limits_{n > m} |(p^n G)[p]/(p^{n + 1} G)[p]|$$ Of course, instead of two non-isomorphic we can get many, but we do not deal much with this.  相似文献   

16.
Let G be a connected graph. For ${x,y\in V(G)}$ with d(x, y) = 2, we define ${J(x,y)= \{u \in N(x)\cap N(y)\mid N[u] \subseteq N[x] \,{\cup}\,N[y] \}}$ and ${J'(x,y)= \{u \in N(x) \cap N(y)\,{\mid}\,{\rm if}\ v \in N(u){\setminus}(N[x] \,{\cup}\, N[y])\ {\rm then}\ N[x] \,{\cup}\, N[y]\,{\cup}\,N[u]{\setminus}\{x,y\}\subseteq N[v]\}}$ . A graph G is quasi-claw-free if ${J(x,y) \not= \emptyset}$ for each pair (x, y) of vertices at distance 2 in G. Broersma and Vumar (in Math Meth Oper Res. doi:10.1007/s00186-008-0260-7) introduced ${\mathcal{P}_{3}}$ -dominated graphs defined as ${J(x,y)\,{\cup}\, J'(x,y)\not= \emptyset}$ for each ${x,y \in V(G)}$ with d(x, y) = 2. This class properly contains that of quasi-claw-free graphs, and hence that of claw-free graphs. In this note, we prove that a 2-connected ${\mathcal{P}_3}$ -dominated graph is 1-tough, with two exceptions: K 2,3 and K 1,1,3, and prove that every even connected ${\mathcal{P}_3}$ -dominated graph ${G\ncong K_{1,3}}$ has a perfect matching. Moreover, we show that every even (2p + 1)-connected ${\mathcal{P}_3}$ -dominated graph is p-extendable. This result follows from a stronger result concerning factor-criticality of ${\mathcal{P}_3}$ -dominated graphs.  相似文献   

17.
It is well known that the classical Sobolev embeddings may be improved within the framework of Lorentz spaces L p,q : the space $\mathcal{D}^{1,p}(\mathbb R^n)$ , 1?<?p?<?n, embeds into $L^{p^*,q}(\mathbb R^n)$ , p?≤?q?≤?∞. However, the value of the best possible embedding constants in the corresponding inequalities is known just in the case $L^{p^*,p}(\mathbb R^n)$ . Here, we determine optimal constants for the embedding of the space $\mathcal{D}^{1,p}(\mathbb R^n)$ , 1?<?p?<?n, into the whole Lorentz space scale $L^{p^{\ast}, q}(\mathbb R^n)$ , p?≤?q?≤?∞, including the limiting case q?=?p of which we give a new proof. We also exhibit extremal functions for these embedding inequalities by solving related elliptic problems.  相似文献   

18.
We derive an asymptotic expansion for the number of representations of an integer \(\mathcal{N}\) in the form $$\mathcal{N} = \ell _1 \left( {p, q} \right) + \ell _2 \left( {x, y} \right),$$ where p, q are odd primes, x, y are integers, ?1 and ?2 are arbitrary primitive quadratic forms with negative discriminant. The equation \(\mathcal{N}\) =p2+q2+x2+y2 was studied earlier by V. A. Plaksin (RZhMat, 1981, 8A135) who used the methods of C. Hooley (RZhMat, 1958, 5451) and Linnik's dispersion method. The author follows Hooley without the use of the dispersion method. The proof is relatively simple.  相似文献   

19.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

20.
In this paper we give criteria for a finite group to belong to a formation. As applications, recent theorems of Li, Shen, Shi and Qian are generalized. Let G  be a finite group, $\cal F$ a formation and p  a prime. Let $D_{\mathcal {F}}(G)$ be the intersection of the normalizers of the $\cal F$ -residuals of all subgroups of G, and let $D_{\mathcal {F}}^{p}(G)$ be the intersection of the normalizers of $(H^{\cal F}O_{p'}(G))$ for all subgroups H of G. We then define $D_{\mathcal F}^{0}(G)=D_{\mathcal F, p}^{~0}(G)=1$ and $D_{\mathcal F}^{i+1}(G)/D_{\mathcal F}^{i}(G)=D_{\mathcal F}(G/D_{\mathcal F}^{i}(G))$ , $D_{\mathcal F, p}^{i+1}(G)/D_{\mathcal F, p}^{~i}(G)=D_{\mathcal F, p}(G/D_{\mathcal F, p}^{~i}(G))$ . Let $D_{\mathcal {F}}^{\infty}(G)$ and $D_{\mathcal {F}, p}^{~\infty}(G)$ denote the terminal member of the ascending series of $D_{\mathcal F}^{i}(G)$ and $D_{\mathcal F, p}^{~i}(G)$ respectively. In this paper we prove that under certain hypotheses, the the $\cal F$ -residual $G^{\cal F}$ is nilpotent (respectively,p-nilpotent) if and only if $G=D_{\mathcal {F}}^{\infty}(G)$ (respectively, $G=D_{\mathcal {F}, p}^{~\infty}(G)$ ). Further more, if the formation $\cal F$ is either the class of all nilpotent groups or the class of all abelian groups, then $G^{\cal F}$ is p-nilpotent if and only if and only if every cyclic subgroup of G order p and 4 (if p?=?2) is contained in $D_{\mathcal {F}, p}^{~\infty}(G)$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号