首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 80 毫秒
1.
基于可见/近红外光谱的水稻品种快速鉴别研究   总被引:7,自引:0,他引:7  
提出了一种应用可见/近红外光谱技术与化学计量学相结合的快速、无损鉴别稻谷品种的新方法。收集了5个品种水稻共150个样本作为实验样本,通过可见/近红外光谱仪扫描这些样本获得了从350 nm到1 075 nm波长范围的光谱信息。将样本的光谱信息进行小波分解以消除高频噪声。将去噪声后的光谱数据经主成分分析压缩成数目较少的新变量(主成分),压缩得到的前4个主成分能够解释99.891%的原始光谱信息。将前4个主成分作为BP神经网络的输入,不同水稻品种值的二进制代码值作为BP神经网络的输出,建立稻谷品种的模式识别模型。模型的预测误差阈值是0.2,模型是3层网络结构,各层的节点分别是4,9和3。150个样本被随机的分成包含100个样本的建模集和50个样本的预测集。结果表明,预测未知的50个样本的正确率达到96%。说明该方法具有较高的鉴别准确度,为稻谷品种的快速无损鉴别提供了一种新的方法。  相似文献   

2.
近红外光谱分析技术   总被引:2,自引:0,他引:2  
张卉  宋妍  冷静  蒋庄德 《光谱实验室》2007,24(3):388-395
介绍了近红外光谱分析技术的工作原理,阐述了其数学模型的建立及分析过程,总结了现有常用的化学计量学方法及各自的优点,最后简单的概括了近红外光谱分析技术的应用,尤其是在制药方面的应用.  相似文献   

3.
现代近红外光谱技术及应用进展   总被引:167,自引:17,他引:167  
简要介绍了现代近红外光谱的发展、技术特点和测量原理 ,对近年来近红外光谱仪器、化学计量学方法及软件和应用的进展情况及我们在这几个方面开展的工作进行了简要介绍  相似文献   

4.
近红外光谱结合小波神经网络鉴别苹果种类   总被引:1,自引:0,他引:1  
将近红外光谱与小波神经网络技术结合,实现对不同种类苹果鉴别.将80个样本随机分为建模样本集和预测样本集.其中建模样本集包含60个样本,预测样本集包含20个样本.应用小波变换与主成分分析对样品数据进行预处理与特征提取.建立一个10-45-2的三层小波神经网络,实现对未知样品预测.实验结果表明,该方法对苹果的种类鉴别率达到100%,说明这种方法有很好的鉴别作用,对苹果种类的准确、无损检测具有积极的实用性.  相似文献   

5.
汤丹明  孙斌  刘辉军 《光谱实验室》2012,29(5):2699-2702
提出一种利用近红外光谱技术进行鸡蛋种类快速、无损鉴别的新方法.选用7500-4000cm-1的光谱,采用标准正态变量变换(SNV)后作主成分分析(PCA),选取前10个主成分作为模型输入,种类类别作为模型输出,分别建立了3种鸡蛋种类的线性判别法(LDA)和支持向量机(SVM)鉴别模型,所建模型均能较好的对鸡蛋种类进行鉴别,SVM模型效果优于LDA模型,其预测集正确识别率达97.44%.结果表明,近红外光谱技术可用于鸡蛋种类的快速、无损鉴别.  相似文献   

6.
薏仁种类的近红外光谱技术快速鉴别   总被引:1,自引:0,他引:1  
薏仁是一种药食两用资源,对其品质快速鉴别的需求也越来越多,近红外光谱技术(near infrared spectroscopy,NIRS)作为一种快速、 无损且环保的方法正适合这一需求。 以不同产地和品种薏仁的近红外光谱为基础,结合化学计量学方法对薏仁种类进行鉴别。 对原光谱用无监督学习算法主成分分析(principal component analysis,PCA)和有监督学习算法学习向量量化(learning vector quantization,LVQ)神经网络、 支持向量机(support vector machine,SVM)进行定性判别分析。 由于不同地区和不同品种的薏仁营养物质组成复杂且含量相近,所选两类薏仁的特征变量很相似,因而PCA得分图重叠严重,很难区分;而LVQ神经网络和SVM都能得到满意结果,LVQ神经网络的预测正确率为90.91%,SVM在经过惩罚参数和核函数参数优选后,分类准确率能达到100%。 结果表明:近红外光谱技术结合化学计量学方法可作为一种快速、 无损、 可靠的方法用于薏仁种类的鉴别,并为市场规范提供技术参考。  相似文献   

7.
近红外漫反射光谱法快速鉴别石斛属植物   总被引:2,自引:0,他引:2  
通过采集15种石斛171份样品的近红外漫反射光谱,结合化学计量学统计分析方法建立预测模型,对不同种石斛进行快速无损鉴别。应用Hotelling T2对随机抽取的5份样品的近红外光谱进行稳定性分析,结果表明,样品的近红外光谱具有较好稳定性。设计正交试验L24(2×4×3×8),对光程类型、光谱波段、导数和平滑四个因素进行优化处理。利用主成分分析对正交试验结果进行分析,结果显示,选择6 500~4 000cm-1的光谱波段,采用多元散射校正、二阶导数和Norris平滑对光谱预处理,提取的主成分数为7时,光谱判别正确率为100%。将正交试验优化条件作为偏最小二乘法判别分析的输入值,随机选取123份样本作为校正集建立预测模型,其余48份样本为预测集,评估预测模型的性能。结果表明,该模型前3个主成分累积贡献率为99.36%,设定鉴别标准偏差为±0.1时,该方法的正确识别率为97.92%,获得满意的结果。该方法的建立为不同种石斛的快速鉴别提供了一种新的方法,同时为药用植物的鉴别提供参考。  相似文献   

8.
近红外光谱技术鉴别海面溢油   总被引:10,自引:3,他引:10  
为快速了解和掌握海面溢油的种类,以便采取应急措施,提出了近红外光谱技术结合模式识别鉴别海面溢油的方法。自行配制了56个汽油、柴油、润滑油的模拟海水样品,用有机溶剂萃取出海水中的溢油后记录其近红外光谱,将原始光谱进行多元散射校正(MSC)和Norris一阶导数平滑预处理后,在主成分分析(PCA)提取不同种类溢油样品特征的基础上引入马氏距离建立溢油样品的识别模型。研究了光谱预处理对溢油鉴别的影响;探讨了马氏距离阈值的确定。结果表明,主成分分析可将原始数据压缩而马氏距离判别可给出离群点的阈值,本文建立的校正模型能正确判别浓度在0.4 μL·mL-1以上的溢油类别,为近红外光谱结合化学计量学方法建立校正模型进行海面实际溢油样品的分类提供了思路。  相似文献   

9.
用傅里叶变换红外光谱技术结合光谱检索的方法对石斛茎进行品种鉴别研究。测试了23个品种,165株石斛茎样品的红外光谱,光谱显示,各样品的红外光谱非常相似,石斛茎中的主要成分是纤维素等多糖物质。利用光谱软件Omnic8.0建立了三个光谱数据库Lib01、Lib02和Lib03,Lib01由每个品种前4株样品的平均光谱组成,Lib02由平均光谱的一阶导数光谱组成,Lib03由平均光谱的二阶导数光谱组成。各样品光谱分别与Lib01进行指定在1 800~500 cm-1光谱范围的相关性、平方差和平方微分差检索,相关性检索的正确率达到92.7%,平方差检索的正确率达到74.5%,平方微分差检索的正确率达到92.7%。各样品光谱的一阶导数光谱和二阶导数光谱分别与Lib02和Lib03进行指定在1 800~500 cm-1光谱范围的平方微分差检索,一阶导数光谱的检索正确率达到93.9%,二阶导数光谱的检索正确率达到90.3%。结果表明,平方微分差算法的一阶导数红外光谱检索更适合于石斛的品种鉴别。红外光谱结合光谱检索的方法能较好的鉴别不同品种的石斛,有望成为简便、易行的植物品种鉴别方法。  相似文献   

10.
化学计量学在近红外光谱定性分析中的应用   总被引:8,自引:0,他引:8  
近红外光谱的多元特性使得它特别适合于应用化学计量学技术进行物质的分析。本文讨论了判别分析技术在近红外光谱定性分析中的应用,结果表明应用相关的化学计量学方法采用近红外光谱进行物质的定性分析是可行的。  相似文献   

11.
提出利用微型近红外光谱仪、结合Y型光纤探头,在900~1 700 nm范围内对奶粉中蛋白质、脂肪含量进行快速、无损检测的漫反射光谱检测方法。基于Unscrambler 9.7化学计量学软件,选择合适的光谱波段,通过PLS算法分别建立了蛋白质、脂肪的校正模型,得到蛋白质、脂肪校正模型的决定系数R2分别为0.987和0.986,均方根误差RMSC分别为0.385和0.419。利用所建模型对预测样本数据集进行预测验证,得到蛋白质的标准差SEPProtein=0.768、脂肪的标准差SEPFat=1.109,表明所建模型具有较高的预测能力,已基本达到实用化要求。  相似文献   

12.
近红外漫反射光谱法快速无损鉴别阿胶真伪   总被引:12,自引:3,他引:12  
采用近红外光谱漫反射光谱技术和模式识别技术快速鉴别阿胶真伪.收集来源不同的阿胶(真品8个,伪品6个),采集其近红外漫反射光谱,使用多重散射校正和小波变换对光谱进行预处理后,分别应用相似度匹配和马氏距离方法建立质量鉴别模型.相似度法使用真品谱图作为标准谱图,用样品谱图与标准谱图的相似度值来鉴别阿胶质量;对阿胶样品进行重复扫描得到28张谱图,随机分为3组后应用马氏距离法建立交叉验证鉴别模型.两种模式识别方法均能准确无误的鉴别阿胶真伪,表明近红外光谱和模式识别技术结合可快速、准确、客观地进行阿胶质量鉴别,可推广到其他中成药的质量鉴别.  相似文献   

13.
支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究   总被引:18,自引:6,他引:18  
支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大黄样品真伪识别模型。对学习集中33个样品模型识别准确率为100%;对70个预测样品的识别准确率为96.77%, 为中药大黄的快速识别提供了参考。研究结果表明了SVM近红外光谱法建立生物样品识别模型的可行性。通过旨在介绍SVM学习方法的基本思想,以引起化学计量学工作者的进一步关注。  相似文献   

14.
以2010年红塔集团在云南4个烟叶生产基地内收集的中部上等烟叶样品为试验对象,其中玉溪、楚雄、昭通的烤烟品种为K326,大理的烤烟品种为红大,共计烟叶近红外光谱1 276条;应用光谱特征投影及相关分析等方法对不同烤烟生产基地之间烟叶近红外光谱的分析结果表明:将样品随机按2:1划分为分析集与验证集后,其分析集与验证集的一维、二维投影均值的相关系数都达到0.99以上,具有较好的一致性;同时,应用一种相似度计算方法得到了不同基地的烟叶样品光谱之间的相似度值,该相似度值可为烟叶的种植规划、质量管理以及烟草工业企业的原料收购和烟叶配方等提供参考。  相似文献   

15.
以红塔集团2007年—2010年在云南省玉溪烤烟产区内采集的主要工业分级烟叶样品为试验对象,其品种为红大,包括不同部位及色组的主要工业分级,共计近红外光谱5 730条;应用光谱特征投影及相关分析方法对不同年度的主要分级烟叶近红外光谱的分析结果表明:相同年度下,将各类型工业分级样品随机按2∶1划分为分析集与验证集后,其分析集与验证集特征投影均值的相关系数达0.98以上,具有较好的一致性;不同年度间,其工业分级样品光谱特征投影均值的相关系数在0.97以上,其中年度一致性最高的是2008年和2009年,较低的是2007年和2010年。同时,应用一种相似度计算方法得到了各工业分级样品光谱之间的相似度值,该相似度值以及不同年度之间的一致性系数,可为烟叶的模块配方组合或替代等提供量化的参考数据。  相似文献   

16.
近红外光谱结合偏最小二乘判别对硫熏浙贝母的无损鉴别   总被引:1,自引:0,他引:1  
浙贝母(Fritillariae thunbergii Bulbus)是一种常用的化痰止咳中药,为浙江著名的“浙八味”之一。硫熏能够使浙贝母增白、防虫蛀以及延长保质期,然而过度的硫熏不仅会影响浙贝母的品质,还会危害人体健康。因此,进行硫熏浙贝母的无损鉴别分析有利于浙贝母的品质监测,保障中药质量。采用近红外光谱结合化学计量学方法进行六种不同硫熏程度浙贝母的鉴别分析,在近红外(900~1 700 nm)光谱条件下,采用“boxplot”统计分析1 000~1 100 nm内样本间的光谱反射值的差异。同时采用主成分分析(PCA)进行六种样本的聚类分析。应用连续投影法(SPA)进行数据挖掘获得10条特征波段,建立其偏最小二乘判别分析(PLS-DA)模型。结果表明,建立的PLS-DA模型可达到与全谱类似的判别结果。近红外光谱技术结合化学计量学方法能够实现不同硫熏程度浙贝母的无损鉴别分析,这为后续进行硫熏浙贝母品质分析以及研发相应贝母便携检测仪提供参考。  相似文献   

17.
应用近红外光谱分析不同产区工业分级烟叶样品的特性   总被引:2,自引:0,他引:2  
以红塔集团2010年玉溪、楚雄、昭通产区内经工业分级后不同部位及色组的中上等烟叶样品为试验对象,其烤烟品种为K326,共计3个产区、六种中上等工业分级17类样品的近红外光谱6 064条;应用光谱特征投影及相关分析等方法对17类烟叶样品近红外光谱的分析结果表明:第1维光谱特征投影均值区分不同分级类型的概率为84%,第2维光谱特征投影均值区分不同产区类型的概率为71%。因此,通过光谱特征投影能够重现性较好地量化解释分级和产区造成烟叶品质的差异,其量化数据可以作为烟叶跨区模块组合的参考。  相似文献   

18.
应用便携式近红外光谱仪采集320份生鲜猪肉在近红外光谱中波区的光谱信息,采用不同优化方法建立猪肉胆固醇预测模型,并对异常样品的剔除及组合预处理方法对模型性能的改善进行了分析。研究表明:通过对异常值的二次剔除,并使用SG一阶导数(savitzky-golay first derivative, SG 1stD)、SG平滑(savitzky-golay smoothing, SGS)和正交信号校正(OSC)的组合预处理方法,可获得最佳生鲜猪肉胆固醇预测模型,其参数如下:校正集相关系数(Rc)=0.9137,校正标准差(standard error of calibration, SEC)=2.5607,验证集相关系数(Rp)=0.656 7,预测标准差(standard error of prediction, SEP)=4.985 5,主因子数(principal factor, PF)=4,范围误差比(ratio of performance to standard deviation, RPD)=2.5032,相对预测标准差(relative standard error of prediction, RSEP)=8.625 4%,SEP/SEC=1.946 8,说明模型在近红外光谱中波区对猪肉胆固醇的分辨能力和预测准确度较好,通过向校正集中补充代表性样品可使模型稳健性进一步改善。对检验集样品预测值(prediction value, PV)与参比值(reference value, RV)的t检验显示二者之间无显著性差异(p>0.05),检验集样品总体预测准确率为62.5%,其中50~70 mg·(100 g)-1区段的局部预测准确率达到91.7%,可以用于生鲜猪肉胆固醇浓度的在线快速初步定量分析。该研究将便携式近红外光谱用于在近红外中波区对生鲜猪肉及肉制品中胆固醇浓度的分析和检测,通过进一步的研究和改进,可将其应用于产品的原料分级、品质和过程控制及市售产品的抽检等。  相似文献   

19.
SVM回归法在近红外光谱定量分析中的应用研究   总被引:6,自引:9,他引:6  
研究了基于统计学习理论的支持向量机(SVM)回归法在近红外光谱定量分析中的应用。以66个小麦样品为实验材料,由33个小麦样品作为校正样品,采用4种不同核函数方法对小麦样品蛋白质含量与小麦样品近红外光谱进行SVM回归建模。以所建4种不同SVM回归模型对33个小麦预测样品的蛋白质含量进行了预测;不同回归模型的预测结果与凯氏定氮法确定的蛋白质含量的标准化学值间的相关系数均在0.97以上,平均绝对误差小于0.32。为了考察SVM回归校正模型的预测效果,同所建PLS回归模型的预测结果进行了比较,表明所建预测小麦样品蛋白质含量的SVM回归模型亦可通过近红外光谱进行实际样品的定量分析,且有较好的分析效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号