首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A self-organizing adaptive fuzzy controller   总被引:13,自引:0,他引:13  
There are two main parts in this paper. The first part presents a knowledge representation and reasoning scheme, called tree-searched neural networks (TNN). The TNN is based on a well-known intuitive knowledge representation (IKR) and can reduce the number of the processing nodes in the neural networks. The second part proposes a self-organizing adaptive fuzzy controller (SOAFC) based on the TNN model. It can help acquire control knowledge and thus can reduce the dependence on experts. Furthermore, designers do not need to predefine all membership functions to cover whole input space domain. For improving its performance further, we design a D-controller which is included within the SOAFC. Whether the fuzzy controller is incorporated with the D-controller or not, it is also guaranteed to be globally stable. Simulation results show that this approach has faster convergence speed, results in better transient response, and in addition requires less total control energy.  相似文献   

2.
We describe a system for implementing fuzzy logic controllers using a neural network. A significant aspect of this system is that the linguistic values associated with the fuzzy control rules can be general concave continuous fuzzy subsets. By using structures suggested by the fuzzy logic framework, we simplify the learning requirements. On the other hand the adaptive aspect of the neural framework allows for the necessary learning.  相似文献   

3.
Evolving fuzzy rule based controllers using genetic algorithms   总被引:9,自引:0,他引:9  
The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine learning of fuzzy controllers, called a Pittsburgh Fuzzy Classifier System # 1 (P-FCS1) is proposed. P-FCS1 is based on the Pittsburgh model of learning classifier systems and employs variable length rule-sets and simultaneously evolves fuzzy set membership functions and relations. A new crossover operator which respects the functional linkage between fuzzy rules with overlapping input fuzzy set membership functions is introduced. Experimental results using P-FCS 1 are reported and compared with other published results. Application of P-FCS1 to a distributed control problem (dynamic routing in computer networks) is also described and experimental results are presented.  相似文献   

4.
Design of fuzzy logic controllers based on generalized T-operators   总被引:1,自引:0,他引:1  
Since Zadeh first proposed the basic principle of fuzzy logic controllers in 1968, the and operators have been popular in the design of fuzzy logic controllers. In this paper, the general concept of T-operators is introduced into the conventional design methods for fuzzy logic controllers so that a general and flexible methodology for the design of these fuzzy logic controllers is available. Then, by computer simulations, studies are made so as to determine the relations between the various T-operators and the performance of a fuzzy logic controller. It is concluded that the performance of the fuzzy logic controller for a given class of plants very much depends upon the choice of the T-operators.  相似文献   

5.
This paper describes a self-organizing fuzzy model of patients undergoing surgery which was created from 10 clinical trials with off-line analysis during maintenance of anaesthesia using the drug propofol. The effects of patient sensitivity and surgical disturbances are also represented in this patient model. Hence, this model can be considered to be a qualitative pharmacologically related model for propofol during the anaesthetic maintenance stage. Furthermore, a closed-loop simulation has been designed to validate the patient model and compare the performance of a self-organizing fuzzy logic controller algorithm against a clinically derived linguistic controller. The successful results obtained provide proof-of-concept and encouragement to perform on-line clinical trials using fuzzy logic-based monitoring and control in operating theatre in the near future.  相似文献   

6.
In order to improve the performance of the sliding mode controller, fuzzy logic sliding mode controller is proposed in this study. The control gain of the conventional sliding mode controller is tuned by a fuzzy logic rule base and, also dynamic sliding surfaces are obtained by changing their slopes using the error states of the system in another fuzzy logic algorithm. These controllers are then combined in order to enhance the performance. Afterwards, proposed controllers were used in trajectory control of a three degrees of freedom spatial robot, which is subjected to noise and parameter variations. Finally, the controllers introduced are compared with a PID controller which is commonly used for control of robotic manipulators in industry. The results indicate the superior performance of the proposed controller.  相似文献   

7.
A novel self-organizing wavelet cerebellar model articulation controller (CMAC) is proposed. This self-organizing wavelet CMAC (SOWC) can be viewed as a generalization of a self-organizing neural network and of a conventional CMAC, and it has better generalizing, faster learning and faster recall than a self-organizing neural network and a conventional CMAC. The proposed SOWC has the advantages of structure learning and parameter learning simultaneously. The structure learning possesses the ability of on-line generation and elimination of layers to achieve optimal wavelet CMAC structure, and the parameter learning can adjust the interconnection weights of wavelet CMAC to achieve favorable approximation performance. Then a SOWC backstepping (SOWCB) control system is proposed for the nonlinear chaotic systems. This SOWCB control system is composed of a SOWC and a fuzzy compensator. The SOWC is used to mimic an ideal backstepping controller and the fuzzy compensator is designed to dispel the residual of approximation errors between the ideal backstepping controller and the SOWC. Moreover, the parameters of the SAWCB control system are on-line tuned by the derived adaptive laws in the Lyapunov sense, so that the stability of the feedback control system can be guaranteed. Finally, two application examples, a Duffing–Holmes chaotic system and a gyro chaotic system, are used to demonstrate the effectiveness of the proposed control method. The simulation results show that the proposed SAWCB control system can achieve favorable control performance and has better tracking performance than a fuzzy neural network control system and a conventional adaptive CMAC.  相似文献   

8.
This paper presents a nonlinear controller design method that integrates linear optimal control techniques and nonlinear neural networks. The multilayered neural networks (MNN's) are incorporated into a model-based linear optimal controller (LOR) to add nonlinear effects on the LOR. The proposed controller can tolerate a wider range of uncertainties than the LOR alone, because the MNN can compensate nonlinear system uncertainties that are not considered in the LOR design. The control performance is improved by using a priori knowledge of the plant dynamics as the system equation and the corresponding LOR. Using the similar technique, a nonlinear servo controller is designed by combining the MNN-based controller and the linear optimal servo controller. Computer simulations are performed to show the applicability and the limitation of the new nonlinear controllers.  相似文献   

9.
Soccer video summarization and classification is becoming a very important topic due to the world wide importance and popularity of soccer games which drives the need to automatically classify video scenes thus enabling better sport analysis, refereeing, training, advertisement, etc. Machine learning has been applied to the task of sports video classification. However, for some specific image and video problems (like sports video scenes classification), the learning task becomes convoluted and difficult due to the dynamic nature of the video sequence and the associated uncertainties relating to changes in light conditions, background, camera angle, occlusions and indistinguishable scene features, etc. The majority of previous techniques (such as SVM, neural network, decision tree, etc.) applied to sports video classifications did not provide a consummate solution, and such models could not be easily understood by human users; meanwhile, they increased the complexity and time of computation and the associated costs of the involved standalone machines. Hence, there is a need to develop a system which is able to address these drawbacks and handle the high levels of uncertainty in video scenes classification and undertake the heavy video processing securely and efficiently on a cloud computing based instance. Hence, in this paper we present a cloud computing based multi classifier systems which aggregates three classifiers based on neural networks and two fuzzy logic classifiers based on type-1 fuzzy logic and type-2 fuzzy logic classification systems which were optimized by a Big-Bang Big crunch optimization to maximize the system performance. We will present several real world experiments which shows the proposed classification system operating in real-time to produce high classification accuracies for soccer videos which outperforms the standalone classification systems based on neural networks, type-1 and type-2 fuzzy logic systems.  相似文献   

10.
In this paper, navigation techniques for several mobile robots are investigated in a totally unknown environment. In the beginning, Fuzzy logic controllers (FLC) using different membership functions are developed and used to navigate mobile robots. First a fuzzy controller has been used with four types of input members, two types of output members and three parameters each. Next two types of fuzzy controllers have been developed having same input members and output members with five parameters each. Each robot has an array of sensors for measuring the distances of obstacles around it and an image sensor for detecting the bearing of the target. It is found that the FLC having Gaussian membership function is best suitable for navigation of multiple mobile robots. Then a hybrid neuro-fuzzy technique has been designed for the same problem. The neuro-fuzzy technique being used here comprises a neural network, which is acting as a pre processor for a fuzzy controller. The neural network considered for neuro-fuzzy technique is a multi-layer perceptron, with two hidden layers. These techniques have been demonstrated in simulation mode, which depicts that the robots are able to avoid obstacles and reach the targets efficiently. Amongst the techniques developed neuro-fuzzy technique is found to be most efficient for mobile robots navigation. Experimental verifications have been done with the simulation results to prove the authenticity of the developed neuro-fuzzy technique.  相似文献   

11.
In this paper, a genetic-fuzzy approach is developed for solving the motion planning problem of a mobile robot in the presence of moving obstacles. The application of combined soft computing techniques — neural network, fuzzy logic, genetic algorithms, tabu search and others — is becoming increasingly popular among various researchers due to their ability to handle imprecision and uncertainties that are often present in many real-world problems. In this study, genetic algorithms are used for tuning the scaling factors of the state variables (keeping the relative spacing of the membership distributions constant) and rule sets of a fuzzy logic controller (FLC) which a robot uses to navigate among moving obstacles. The use of an FLC makes the approach easier to be used in practice. Although there exist many studies involving classical methods and using FLCs they are either computationally extensive or they do not attempt to find optimal controllers. The proposed genetic-fuzzy approach optimizes the travel time of a robot off-line by simultaneously finding an optimal fuzzy rule base and optimal scaling factors of the state variables. A mobile robot cant then use this optimal FLC on-line to navigate in presence of moving obstacles. The results of this study on a number of problem scenarios show that the proposed genetic-fuzzy approach can produce efficient knowledge base of an FLC for controlling the motion of a robot among moving obstacles.  相似文献   

12.
Fuzzy logic applicable to decision-making processes such as diagnostic expert systems and fuzzy controllers is the prime concern of this paper. In these applications, an inverse operation (or backward inference) plays an important role. In the current paper, a new backward inference technique based on Gödelian logic is proposed. The relation between the forward and backward inferences is established by introducing fuzzy joint and conditional relations.  相似文献   

13.
模糊自组织特征映射模型   总被引:1,自引:0,他引:1  
本文提出了一种模糊自组织特征映射模型算法,它将模糊c-均值模型结合到Kohonen自组织算法的学习和更新策略中,从而将神经元的侧抑制作用与模糊控制策略有机地结合起来;不仅实现了关于模糊c-均值的优化问题,而且还通过隶属函数的重新构造最终构成了自组织有序拓扑图。仿真结果表明收敛性得到了很大提高。  相似文献   

14.
本文讨论了具有脉冲和无限时滞的模糊细胞神经网络的全局指数稳定性.通过建立一个脉冲时滞%积分微分不等式,以及模糊逻辑算子与M-矩阵的性质,不仅得到了系统全局指数稳定的充分条件,而且也给出了指数收敛速度.最后,所给的例子充分验证了文中所给出的充分条件的有效性.  相似文献   

15.
Complex nonlinear systems can be represented to a set of linear sub-models by using fuzzy sets and fuzzy reasoning via ordinary Takagi-Sugeno (TS) fuzzy models. In this paper, the exponential stability of TS fuzzy bidirectional associative memory (BAM) neural networks with impulsive effect and time-varying delays is investigated. The model of fuzzy impulsive BAM neural networks with time-varying delays established as a modified TS fuzzy model is new in which the consequent parts are composed of a set of impulsive BAM neural networks with time-varying delays. Further the exponential stability for fuzzy impulsive BAM neural networks is presented by utilizing the Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) technique without tuning any parameters. In addition, an example is provided to illustrate the applicability of the result using LMI control toolbox in MATLAB.  相似文献   

16.
In this paper,the global exponential stability of fuzzy cellular neural networks with impulses and infinite delays is investigated.Based on an impulsive delayed integro-differential inequality and the properties of fuzzy logic operation and M-matrix,an easily verified sufficient condition is obtained.Moreover,the exponential convergent rate for the fuzzy cellular neural networks with impulses and infinite delays is also given.An example is given to illustrate the effectiveness of our theoretical result.  相似文献   

17.
The main purpose of the paper is to present a fault-tolerant control system of an autonomous mobile robot. The authors present a framework for rapid prototyping of a behavior-based control system relying on tools and technologies of the Microsoft R Robotics Developer Studio. Fault detection and isolation is carried out with the help of the model-based and knowledge-based diagnostics. The first approach is developed by applying recurrent neural networks for residual generation and fuzzy logic for their evaluation. The second approach depends on scalar feature estimation and fuzzy reasoning. Basing on this information rules represented in the form of a decision table are applied for robot's behavior reconfiguration. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
An adaptive fuzzy control method is developed to suppress chaos in the permanent magnet synchronous motor drive system via backstepping technology. Fuzzy logic systems are used to approximate unknown nonlinearities and an adaptive backstepping technique is employed to construct controllers. Compared with the conventional backstepping, the designed fuzzy controllers’ structure is very simple. The simulation results indicate that the proposed control scheme can suppress the chaos of PMSM drive systems and track the reference signal successfully even under the parameter uncertainties.  相似文献   

19.
城市主干道交通信号灯模糊线控制的探讨   总被引:13,自引:0,他引:13  
本文首先提出城市交通系统线控制的两级递阶结构:第一级,用模糊逻辑控制器确定单路口交通信号灯的周期和绿信比;第二级,用模糊相位控制器确定相邻两路口的相位差;两级间用模糊转换开关协调;然后,提出具体的实现方法。  相似文献   

20.
The aim of this paper is to study the invariant and attracting set of fuzzy cellular neural networks with variable delays. Based on a delayed differential inequality and the properties fuzzy logic operation and M-matrix, the invariant and attracting set is obtained. Moreover, two examples are given to illustrate the effectiveness of our theoretical result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号