首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mounicou S  Meija J  Caruso J 《The Analyst》2004,129(2):116-123
An approach for screening and resolving selenium-containing plant proteins was developed based on the combination of sample preparation and multi-dimensional liquid chromatography coupled to ICP-MS. Different protein extraction protocols were investigated. A 24 h dodecylsulfate-mediated protein extraction in a sonication bath followed by acetone precipitation was found to be optimal. The use of different protein precipitate solubilizing agents (sodium dodecyl sulfate media and Tris-HCl buffer) demonstrates possible fractionation of the selenium-containing proteins. Selenium-containing protein screening and fractionation were carried out by means of SEC-ICP-MS. High molecular weight selenium containing proteins were solubilized with a sodium dodecyl sulfate-containing buffer, whereas the low molecular weight compounds were released into a Tris-HCl buffer. Size exclusion chromatography-fast protein liquid chromatography coupled to ICP-MS allowed separation and detection of several selenium-containing proteins in Se-supplemented wild type Brassica juncea plant, a fast growing selenium accumulator.  相似文献   

2.
An analytical procedure for selenium speciation of analysis of selenourea (SeU), selenoethionine (SeE), selenomethionine (SeM), Se(VI), Se(IV), dimethylselenide (dMeSe) and dimethyldiselenide (dMedSe) was developed, based on two complementary liquid chromatography (LC) techniques coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Specifically, strong anion exchange (SAX) chromatography coupled with ICP-MS was used for the separation and quantification of all the earlier mentioned Se compounds, except for the two methyl selenides, which could be separated and determined by reversed phase chromatography coupled with ICP-MS. This procedure was applied to a soil sample from the warm springs area of Thermopyles (Greece). For leaching the Se species from the soil sample, four extraction methods, using water at ambient temperature, hot water, methanol and 0.5 M HCl, were tested for their efficiency of extracting the different Se species. The speciation results obtained by the LC-ICP-MS methods were compared with those obtained by voltammetric techniques. The determination of total selenium in the sample was achieved by graphite furnace atomic absorption spectrometry, as well as by ICP-atomic emission spectrometry, after suitable digestion of the sediment sample.  相似文献   

3.
A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week.  相似文献   

4.
An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination with an aqueous solution of 6 mmol L–1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 σ) achieved by the HPLC-FAAS system was 1 mg L–1 of selenium (100 μL injections) for each of the four selenium species. More powerful selenium detection was achieved using an ELAN 5000 ICP-MS instrument. Selenium was measured at m/z = 82. The ICP-MS signal intensity was enhanced by a factor of 3–4 after addition of 3% methanol to the chromatographic mobile phase and by using an increased plasma power input of 1300 W. The limit of detection achieved under these conditions was 1 μg L–1 (100 μL injections). The HPLC-ICP-MS system was used for selenium speciation of selenite and selenate in aqueous solutions during a BCR certification exercise and for selenium speciation in the certified reference material, BCR No. 402 White Clover. Extraction experiments revealed that the selenium species in the biological material were extractable only in the presence of water in the extraction medium. The results indicated that selenate and a compound of unknown identity U were present in the plant sample.  相似文献   

5.
Elemental speciation is becoming a common analytical procedure for geochemical investigations. The various redox species of environmentally relevant metals can have vastly different biogeochemical properties, including sorption, solubility, bioavailability, and toxicity. The use of high performance liquid chromatography (HPLC) coupled to elemental specific detectors, such as inductively coupled plasma mass spectrometry (ICP-MS), has become one of the most important speciation methods employed. This is due to the separation versatility of HPLC and the sensitive and selective detection capabilities of ICP-MS. The current study compares standard mode ICP-MS to recently developed reaction cell (RC) ICP-MS, which has the ability to remove or reduce many common polyatomic interferences that can limit the ability of ICP-MS to quantitate certain analytes in complex matrices. Determination of chromium and selenium redox species is achieved using ion-exchange chromatography with elemental detection by standard and RC-ICP-MS, using various chromium and selenium isotopes. In this study, method performance and detection limits for the various permutations of the method (isotope monitored or ICP-MS detection mode) were found to be comparable and generally less than 1 μg L−1. The method was tested on synthetic laboratory samples, surface water, groundwater, and municipal tap water matrices.  相似文献   

6.
Wang B  Xie L  Lin Y  Yan Z  Wang L 《色谱》2011,29(3):223-227
建立了高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用检测硒酸盐(SeVI)、亚硒酸盐(SeIV)、硒代蛋氨酸(SeMet)、硒代胱氨酸(SeCys2)和硒代乙硫氨酸(SeEt)的方法。采用Hamilton PRP X-100色谱柱(250 mm×4.6 mm, 5 μm),使用5 mmol/L的柠檬酸溶液(pH 4.5)作为流动相,电感耦合等离子体质谱(ICP-MS)检测,在21 min内可以完全分离5种硒形态。各形态硒的线性相关系数均大于0.9995, SeVI、SeIV、SeMet、SeCys2、SeEt的检出限分别为0.4、0.4、5.6、0.9、1.2 μg/L。探讨了不同提取方法的提取效果,鲜蘑菇和猪肉样品加标回收实验表明,对水溶性良好的无机硒和硒代蛋氨酸而言,采用柠檬酸溶液提取的效果非常好,SeIV和SeVI的回收率均在100%左右,SeMet的回收率为85.0%~95.3%;用蛋白酶水解提取,SeCys2和SeEt的回收率为79.9%~91.5%。该方法可完全满足食品中这5种硒形态的准确定量分析。  相似文献   

7.
Onning G  Bergdahl IA 《The Analyst》1999,124(10):1435-1438
Fish accumulate significant amounts of selenium and are an important dietary source of this element. Some studies have however indicated a low bioavailability of the selenium from fish. Since little is known of the selenium forms in fish, we have studied soluble selenium compounds in fish species, and compared different techniques for fractionation of selenocompounds (size-exclusion chromatography, ultrafiltration, and precipitation with trichloroacetic acid). The size-exclusion column (Superdex 200 HR 10/30) was coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS). The limit of detection was 0.20 microgram l-1 and the selenium response was linear in the investigated concentration range of 0-20 micrograms l-1 (r2 = 0.98). For plaice 47% of the selenium was extractable while the extraction efficiency for cod was 23%. The fish extracts were injected onto the column four times each and the variation in the quantitative data for different selenium-containing fractions between the runs was small (RSD < 10%). The recovery of selenium in the chromatographic step was about 70%, indicating some interaction between the fish extracts and the column material. Ultrafiltration using a membrane with a cut-off at M(r) 10,000 gave results similar to the size-exclusion fractionation, for cod about 20% of the soluble selenium had a M(r) < 10,000 and the corresponding value for plaice was 69%. Removal of high-molecular-weight compounds from the sample by trichloroacetic acid precipitation showed a similar proportion of low-molecular-weight compounds for plaice (77%), while the obtained value for cod was higher (38%) compared with the other techniques.  相似文献   

8.
An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination with an aqueous solution of 6 mmol L–1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 σ) achieved by the HPLC-FAAS system was 1 mg L–1 of selenium (100 μL injections) for each of the four selenium species. More powerful selenium detection was achieved using an ELAN 5000 ICP-MS instrument. Selenium was measured at m/z = 82. The ICP-MS signal intensity was enhanced by a factor of 3–4 after addition of 3% methanol to the chromatographic mobile phase and by using an increased plasma power input of 1300 W. The limit of detection achieved under these conditions was 1 μg L–1 (100 μL injections). The HPLC-ICP-MS system was used for selenium speciation of selenite and selenate in aqueous solutions during a BCR certification exercise and for selenium speciation in the certified reference material, BCR No. 402 White Clover. Extraction experiments revealed that the selenium species in the biological material were extractable only in the presence of water in the extraction medium. The results indicated that selenate and a compound of unknown identity U were present in the plant sample. Received: 4 September 1996 / Accepted: 12 December 1996  相似文献   

9.
The aim of this work was to develop a simple and fast high performance liquid chromatography-inductively coupled argon plasma (ICP) mass spectrometry (MS) method capable of separating and detecting the two volatile selenium species dimethyl selenide (DMeSe) and dimethyl diselenide (DMeDSe) in biological samples. Dimethyl selenide and dimethyl diselenide were separated on a short reversed phase column using an eluent containing 40% methanol and detected by dynamic reaction cell ICP-MS monitoring the (80)Se isotope. The limit of detection was 8 nM for both species (corresponding to 0.6 and 1.3 μg Se/L for DMeDSe and DMeSe, respectively). Both compounds exhibited a linear signal-concentration relationship in the investigated concentration range of 0.1-1 μM with a precision on the determinations better than 3%. The method was applied for analysis of samples from cancer cell lines incubated with methylseleninic acid, selenomethionine, Se-methylselenocysteine, and sodium selenite. DMeDSe were detected in some samples. The method offers a simple and fast analysis of DMeDSe and DMeSe using standard liquid chromatography coupled with ICP-MS equipment and interfacing.  相似文献   

10.

A method is presented for arsenic speciation analysis of an oyster sample using ion chromatography coupled with an inductively coupled plasma mass spectrometry (ICP-MS) instrument. A strong anion exchange resin was employed with a step gradient elution of 0.1 mM/0.1 M K 2 SO 4 at pH 10.2. Arsenobetaine and dimethylarsinic acid were determined following extraction based on trypsin enzymolysis with 95-100% extraction efficiency. Limits of detection in the range 0.1-0.3 mg kg m 1 of arsenic were obtained for organic arsenic species. No inorganic arsenic was detected. Validation was performed using TORT-2 as a certified reference material. Although high performance liquid chromatography (HPLC) coupled to ICP-MS is an effective method for speciation analysis it is not always necessary to obtain such a detailed picture. A simple liquid chromatographic separation technique based upon mini-column technology is presented. It was developed to obtain a fast, efficient and reliable separation of inorganic from organic, i.e. assumed toxic from non-toxic, arsenic and selenium species suitable for use as an initial screening method for environmental analysis. Two types of strong anion exchange resin were tested. Excellent separation was obtained for both min-column resins and analysis times were within 7 min. Limits of detection obtained for inorganic arsenic, organic arsenic, selenomethionine, Se IV and Se VI were 1.6, 1.8, 66, 32 and 22 µg kg m 1 , respectively.  相似文献   

11.
Strong cation-exchange chromatography (SCX-HPLC) was used in conjunction with inductively coupled plasma mass spectrometry (ICP-MS) to investigate cationic selenium species present in leaf extract of wild-type Brassica juncea supplemented with selenite. Total amount of Se accumulated by the leaves was found to be 352 microg g(-1). Cation-exchange solid-phase extraction (SCX-SPE) was used to pre-concentrate the cationic species present in the leaf extract. Methylselenomethionine (MeSeMet) and dimethylselenoniumproprionate (DMSeP) were synthesized and characterized by electrospray quadrupole time-of-flight MS (ESI-QTOF-MS). Laboratory synthesized and commercially available standards were used in chromatographic studies to identify the Se species in the leaf extract through retention time comparisons and standard addition method. Major cationic selenium species identified in the present study were MeSeMet and methylselenocysteine (MeSeCys) while selenomethionine (SeMet) was found in minor quantities.  相似文献   

12.
Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast.  相似文献   

13.
Selenium exists in several oxidation states and a variety of inorganic and organic compounds, and the chemistry of selenium is complex in both the environment and living systems. Selenium is an essential element at trace levels and toxic at greater levels. Interest in speciation analysis for selenium has grown rapidly in this last decade, especially in the use of chromatographic separation coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Complete characterization of selenium compounds is necessary to understand selenium's significance in metabolic processes, clinical chemistry, biology, toxicology, nutrition and the environment. This review describes some of the essential background of selenium, and more importantly, some of the currently used separation methodologies, both chromatographic and electrophoretic, with emphasis on applications of selenium speciation analysis using ICP-MS detection.  相似文献   

14.
Quantitative determination was made of the iron-containing protein myoglobin in a range of different foods, including meat, processed meat, fish, and shellfish, by liquid chromatography coupled to a double-focusing sector field inductively coupled plasma mass spectrometry (ICP-MS). The concentration of myoglobin determined in the samples ranged from 0 to 6.5 mg/kg, and the analytical precision (coefficient of variation) for the analysis of 8 replicate raw steak extracts was 2.1%. By using a double-focusing ICP-MS instrument, direct on-line detection of the most abundant iron isotope 56Fe was possible without interference from a major polyatomic interference (40Ar16O). Separation of myoglobin from other iron-containing compounds was facilitated by use of a gel filtration column (TSK Gel G2000SW) and Tris buffer (pH 7.2). The chromatographic column was coupled directly to the nebulizer of the ICP-MS instrument by a short piece of PEEK tubing. To ensure sufficient quality control throughout the study, a raw beefsteak sample was developed as an in-house reference material. The concentration of the heme-iron-containing protein myoglobin in this sample was determined by the developed method and independently by a conventional spectrophotometric method. The agreement between the 2 analytical techniques was very good. The detection limit (3 times the signal/noise ratio for a blank) of the reported method for myoglobin was 0.85 ng Fe/L.  相似文献   

15.
A procedure is described for the enzymatic digestion of tuna and mussel samples that allows the determination of selenium species by high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry. The species were extracted by two-step enzymatic hydrolysis with a non-specific protease (subtilisin). The selenium species were separated on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions, namely phosphate buffers at pH 2.8 and pH 6.0 as mobile phases. The method determines organic (trimethylselenonium, selenocystine, selenomethionine and selenoethionine) and inorganic selenium species (selenite and selenate), but only organic selenium species were found in the samples. The sum of identified selenium species in the sample was about 30% of the total selenium present in the enzymatic extract despite the fact that recoveries of total hydrolysed selenium were 93-102%. Trimethylselenonium ion and selenomethionine were found in both tuna and mussel samples and an unknown selenium species was also found in tuna samples.  相似文献   

16.
Selenium uptake and transformation was studied in Se-enriched Broccoli (Brassica olearacea). Plants were grown in hydroponic culture and exposed during 40 days to Na2SeO3 (1 mg L−1). After growing, the plants were harvested and their different parts (roots, stems and fruit) were analyzed by ICP-MS or LC-ICP-MS.Se-species were identified and quantified after enzymatic extraction by using both an anion exchange (PRP-X100), and a size exclusion/ion exchange (Shodex Asahipak) chromatographic columns. Selenium translocation and transformation Se species in plants was studied through the Se-speciation in root, stem and fruit. After 40 days of exposure, selenomethionine was the major species found in roots, however, Se-methylselenocysteine was the main species found in the fruit, suggesting Broccoli as a source of this important selenoamino acid in human diet. However, the degree of meal processing influences the stability of Se-aminoacids. Speciation studies in boiled Broccoli and in the extraction water were also carried out. This experiment revealed a noticeable degradation of Se-methylselenocysteine in the boiled Broccoli fruit.Proteins soluble in Tris-HCl were analyzed by two-dimensional chromatography coupled to ICP-MS.The results obtained contribute not only to a deeper understanding of Se accumulation mechanisms by plants but also to further functional food complements preparation and the effect of food processing on species stability.  相似文献   

17.
《Analytical letters》2012,45(9):1511-1523
Anion and cation exchange high-performance liquid chromatography (HPLC) combined with inductively coupled plasma-mass spectrometry (ICP-MS) were used for speciation of selenium in supplements. All the parameters in the extraction, separation, and determination procedures were optimized. Recovery studies for the selenium species from the anion and cation exchange columns were performed and there were no analyte losses. Limits of detection for selenium(IV), selenium(VI), Se in selenomethionine, and Se in selenocystine were 0.85, 0.68, 0.84, and 0.99 nanogram per milliliter, respectively. Six brands were analyzed to identify and quantify the selenium species present, and the results found were compared with the values given on the labels. The selenium species matched the labeled species for four brands, whereas two brands were found to contain inorganic Se(VI) in contrast with the labeled claim of selenomethionine.  相似文献   

18.
Several complementary separation mechanisms (size-exclusion chromatography, SEC; fast protein liquid chromatography, FPLC; reverse-phase chromatography, RPC) have been coupled to inductively coupled plasma mass spectrometry (ICP-MS) detection to investigate the speciation of Cd, Se, Cu and Zn in mussel hepatopancreas. SEC with double-focusing (DF) ICP-MS detection was used first for speciation analysis of those four trace elements, both in uncontaminated mussels and in mussels exposed to Cd (500 μg l−1) or to Cd+Se (500 μg l−1 of each element). Observed SEC results indicated that Se does not seem to significantly bind to metallothionein-like proteins (MLPs) ‘in vivo’. Total cytosolic Cd and MLPs content were lower in Cd+Se exposed mussels than those exposed to Cd only. For each treatment, 50 μl of the SEC peak fraction containing the MLPs was used to perform fast protein liquid chromatography coupled ‘on-line’ with a quadrupole (Q) ICP-MS. 82Se and 114Cd isotopes were simultaneously monitored. Four and five Cd/MLPs isoforms were then detected in mussels exposed to only Cd and Cd+Se, respectively. In contrast, no signs of Se/MLP isoforms were found for both treatments. Subsequently, the bulk of MLPs eluting from the FPLC system were isolated and lyophilizated. A 50-μl aliquot of such reconstituted lyophilisate was then injected into a Vydac C8 Reverse-Phase column directly connected to the Q-ICP-MS. Results confirmed the presence of one more Cd/MLP peak in those mussels exposed to Cd+Se. However, the number of Cd/MLP peaks detected decreased to three and four in only Cd and Cd+Se exposed animals, respectively. These results tend to indicate that Se, which does not trigger the biosynthesis of MLPs, could probably orient such synthesis towards the generation of a new Cd/MLP isoform in mussels submitted to both elements. The possible interrelation/complementation between Se and MLP against Cd toxicity is discussed.  相似文献   

19.
The stability of arsenic, selenium, antimony and tellurium species in water and urine (NIST SRM 2670n) as well as in extracts of fish and soil certified reference materials (DORM-2 and NIST SRM 2710) has been investigated. Stability studies were carried out with As(III), As(V), arsenobetaine, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), Se(IV), Se(VI), selenomethionine, Sb(III), Sb(V) and Te(VI). Speciation analysis was performed by on-line coupling of anion exchange high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Best storage of aqueous mixtures of the examined species was achieved at 3 degrees C whereas at -20 degrees C species transformation especially of selenomethionine and Sb(V) took place and a new selenium species appeared within a period of 30 days. Losses and species transformations during extraction processes were investigated. Extraction of the spiked fish material with methanol/water led to partial conversion of Sb(III), Sb(V) and selenomethionine to two new antimony and one new selenium species. The other arsenic, selenium and tellurium species were almost quantitatively extracted. For soil spiked with MMA, PAA, Se(IV) and Sb(III), recoveries after extraction with water and sulfuric acid (0.01 mol/L) were below 20%.  相似文献   

20.
根据Osborne溶解性蛋白质分类法,用去离子水、2%NaCl溶液、70%乙醇、0.5%KOH4种溶液分别提取出大米中相应的清蛋白、球蛋白、醇溶蛋白及谷蛋白。利用电感耦合等离子质谱(ICP-MS)测量各类蛋白提取液中的硒含量;用色谱与质谱联用法对大米蛋白提取液中含硒蛋白组分及含硒氨基酸组成进行初步分析。结果表明:大米中的硒主要与蛋白质结合,在4类蛋白提取液中硒含量由高到低的分布顺序为:谷蛋白、醇溶蛋白、清蛋白和球蛋白。清蛋白提取液中,分子量为12.6 kDa蛋白是主要的含硒蛋白组分;大米中约30%的硒以硒代半胱氨酸形式存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号