首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
陈芳  朱丽华  王宏 《大学化学》2019,34(7):67-72
As a new type of nano-materials, carbon dots have unique optical properties and excellent chemical properties, such as easy preparation, low cost, high chemical stability and good biocompatibility. Three kinds of carbon dots were prepared by microwave, hydrothermal and pyrolysis methods, and characterized by infrared spectroscopy. The ultraviolet-visible absorption spectra and fluorescence spectra of the three carbon dots were measured and compared with those of small organic fluorescent molecules. The fluorescence quantum yield of three carbon dots was measured using quinine sulfate as standards. This experiment not only enables students to learn the preparation methods and the unique luminescent properties of carbon nanomaterials, but also enables students to have a deeper understanding of the structures, principles and applications of three kinds of molecular spectroscopy instruments based on the measurement of quantum yield. This experiment can be used as a comprehensive 10-hour instrumental analysis experiment for junior students majoring in chemistry, applied chemistry and material chemistry.  相似文献   

2.
Silicon nanocrystals (Si‐NCs) are emerging as an attractive class of quantum dots owing to the natural abundance of silicon in the Earth's crust, their low toxicity compared to many Group II–VI and III–V based quantum dots, compatibility with the existing semiconductor industry infrastructure, and their unique optoelectronic properties. Despite these favorable qualities, Si‐NCs have not received the same attention as Group II–VI and III–V quantum dots, because of their lower emission quantum yields, difficulties associated with synthesizing monodisperse particles, and oxidative instability. Recent advancements indicate the surface chemistry of Si‐NCs plays a key role in determining many of their properties. This Review summarizes new reports related to engineering Si‐NC surfaces, synthesis of Si‐NC/polymer hybrids, and their applications in sensing, diodes, catalysis, and batteries.  相似文献   

3.
Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most relevant developments in the fast-growing world of nanotechnology. Initially proposed as luminescent biological labels, they are finding new important fields of application in analytical chemistry, where their photoluminescent properties have been exploited in environmental monitoring, pharmaceutical and clinical analysis and food quality control. Despite the enormous variety of applications that have been developed, the automation of QDs-based analytical methodologies by resorting to automation tools such as continuous flow analysis and related techniques, which would allow to take advantage of particular features of the nanocrystals such as the versatile surface chemistry and ligand binding ability, the aptitude to generate reactive species, the possibility of encapsulation in different materials while retaining native luminescence providing the means for the implementation of renewable chemosensors or even the utilisation of more drastic and even stability impairing reaction conditions, is hitherto very limited. In this review, we provide insights into the analytical potential of quantum dots focusing on prospects of their utilisation in automated flow-based and flow-related approaches and the future outlook of QDs applications in chemical analysis.  相似文献   

4.
Magnetic nature carbon dots (MNCDs) are fast growing materials with extremely unique physico-chemical properties and physiological ability to extend their applications from separation science to detection and bio-/magnetic resonance imaging applications. Recent studies have revealed that the MNCDs are significantly used as promising agents in analytical chemistry for the separation and identification of trace level target analytes. Further, the MNCDs have been used as probes for bioimaging of cells and magnetic resonance imaging (MRI) of tumors. Due to the lack of comprehensive reviews in this emerging field especially MNCDs applications in analytical chemistry, this review may provide quick guide and reference on the MNCDs-based analytical approaches for the separation and detection of trace level analytes, and bio- and MR- imaging of various cells. In this review article, we will summarize the synthetic approaches for the fabrication of MNCDs. The main part of this proposed review is devoted to the tremendous applications of MNCDs (Fe3O4@CDs, metal ion (Fe3+, Mn2+, Co2+ and Gd2+)-doped CDs, MnO2@CDs) in analytical chemistry from separation science to detection and bio- and MR imaging. Finally, we will explore the challenges and future prospects of magneto fluorescent carbon dots in biomedical applications.  相似文献   

5.
Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria.  相似文献   

6.
Semiconductor nanocrystals or quantum dots (QDs) are highly photoluminescent materials with unique optical attributes that are being exploited in an ever‐increasing array of applications. However, the complex surface chemistry of these finite‐sized fluorophores gives rise to a number of photophysical phenomena that can complicate their use in imaging applications. Fluorescence intermittency (FI), photoluminescence enhancement (PLE) and spectral bluing are properties of QD emission that would appear, at first sight, detrimental to quantitative measurement. Fortunately, developments in rational QD synthesis and surface modification are promising to minimize the effects of these fluorescence instabilities, while applications that exploit them are now coming to the fore. We review recent experimental and theoretical studies of FI, PLE and bluing, highlighting the benefits, as well as complications, they bring to key applications.  相似文献   

7.
A perspective on bioconjugated nanoparticles and quantum dots   总被引:1,自引:0,他引:1  
Bioconjugated nanoparticles and quantum dots are among the most exciting nanomaterials with promising application potentials in nanomedicine field. These applications include biosensing, bioimaging, bioassay, targeted drug delivery and new therapeutic agents or method development. Although most of these applications are based on the optical properties of nanoparticle materials such as surface plasmon resonance, surface enhanced Raman scattering and strong photoluminescence, other aspects of nanoparticles such as the catalytic effect and amplification effect associated with the nanoscale dimension have also been explored. This review presents a narrative summary on the use of bioconjugated nanoparticles and quantum dots for biological applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.  相似文献   

8.
Carbon dots (CDs), a new member of the carbon-based material family, possess unique properties, such as high fluorescence, non-toxicity, eco-friendliness, stability and cost-effectiveness. These properties helped CDs to receive tremendous attention in various fields, namely, biological, opto-electronic, bio-imaging and energy-related applications. Although CDs are widely explored in bio-imaging and bio-sensing applications, their effectiveness in forensic science and technology is comparatively new. In this review, applications of CDs pertaining to latent FPs recovery since 2015 to 2020 is summarized comprehensively.  相似文献   

9.
席强  王捷  陈钰  刘仲明 《化学研究》2014,(2):209-216
量子点作为一种新型的电化学发光体具有独特的理化性质,是电化学发光分析领域的研究热点之一.本文简要介绍了量子点电化学发光的机理,回顾了近几年来功能化量子点作为电化学发光体在免疫分析、核酸分析、适体分析、细胞表面聚糖分析等方面的应用,并对其今后的发展方向作了展望.  相似文献   

10.
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs–nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs–nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs–nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.  相似文献   

11.
As a new type of quantum dots (QDs), hexagonal boron nitride quantum dots (BNQDs) exhibit promising potential in the applications of disease diagnosis, fluorescence imaging, biosensing, metal ion detection, and so on, because of their remarkable chemical stability, excellent biocompatibility, low cytotoxicity, and outstanding photoluminescence properties. However, the large-scale fabrication of homogeneous BNQDs still remains challenging. In this article, the properties and common fabrication methods of BNQDs are summarized based on the recent research progress. Then, the corresponding yields, morphologies, and fabrication mechanisms of these as-obtained BNQDs are discussed in detail. Moreover, the applications of these as-obtained BNQDs in different fields are also discussed. This article is expected to inspire new methods and improvements to achieve large-scale fabrication of homogeneous BNQDs, which will enable their practical applications in future.  相似文献   

12.
Nitrogen-doped graphene quantum dots with oxygen-rich functional groups   总被引:2,自引:0,他引:2  
Graphene quantum dots (GQDs) represent a new class of quantum dots with unique properties. Doping GQDs with heteroatoms provides an attractive means of effectively tuning their intrinsic properties and exploiting new phenomena for advanced device applications. Herein we report a simple electrochemical approach to luminescent and electrocatalytically active nitrogen-doped GQDs (N-GQDs) with oxygen-rich functional groups. Unlike their N-free counterparts, the newly produced N-GQDs with a N/C atomic ratio of ca. 4.3% emit blue luminescence and possess an electrocatalytic activity comparable to that of a commercially available Pt/C catalyst for the oxygen reduction reaction (ORR) in an alkaline medium. In addition to their use as metal-free ORR catalysts in fuel cells, the superior luminescence characteristic of N-GQDs allows them to be used for biomedical imaging and other optoelectronic applications.  相似文献   

13.
A technique for generating a general screening platform consisting of dots of immobilized beads on silicon has been developed via self-sorting and -assembly of different kinds of beads. The dots are defined by a teflon-like film, which due to its hydrophobic characteristics also prevents cross-contamination of liquid from different dots. To enable functionalization of individual dots with different target molecules simultaneously a new way of microcontact printing has been explored where different target solutions are printed in parallel using one stamp. In order to show that this platform can be designed for both biochemical assays and organic chemistry, streptavidin-, amino- and hydroxy-functionalized beads have been self-sorted and -assembled both on separate and common platforms. The self-sorting and -arrangement are based on surface chemistry only, which has not previously been reported. Beads of different sizes and material have successfully been immobilized in line patterns as narrow as 5 mum. Besides silicon, quartz and polyethylene have also been used as substrates.  相似文献   

14.
Carbon quantum dots (CQDs) are a new class of fluorescence small carbon nanoparticles with a particle size of less than 10 nm and have vast applications in the field of bioimaging, biosensing and disease-detection. These are promising materials for nano-biotechnology since it has smaller particle size, excellent biocompatibility and excitation wavelength dependent photoluminescence (PL) behavior, photo induced electron transfer, chemical inertness and low toxicity. These materials have excellent fluorescent properties such as broad excitation spectra, narrow and tunable emission spectra, and high photostability against photo bleaching and blinking than other fluorescent semiconductor quantum dots. This review article demonstrate the recent progress in the synthesis, functionalization and technical applications of carbon quantum dots using electrochemical oxidation, combustion/thermal, chemical change, microwave heating, arc-discharge, and laser ablation methods from various natural resources. Natural carbon sources are used for the preparation of CQDs due to its low cost, environmental friendly and widely available.  相似文献   

15.
来守军  关晓琳 《化学进展》2011,23(5):941-950
量子点作为新型纳米发光材料备受关注,但由于光学稳定性和生物相容性的问题而在实际应用上受限。聚合物对量子点的修饰能够提供量子点合成的有效支撑基质,而且还可以改善量子点的稳定性和单分散性,进而可以拓展量子点应用于化学、物理以及生物学领域。基于聚合物修饰量子点的优势,本文简述了聚合物表面修饰量子点的方法、合成路线、步骤、特点以及发展现状。其中,双亲分子涂敷的量子点可以改善量子点的水溶性;多基配体包裹的量子点更具有稳定性和功能性;末端功能化聚合物表面修饰的量子点则可以合成更为先进功能的材料;胶封树枝状定域量子点具有单分散和优越发光特性。同时,还综述了各种表面修饰方法的最新研究进展,存在问题以及应用发展趋势。  相似文献   

16.
半导体荧光量子点标记技术   总被引:1,自引:0,他引:1  
林毅  谢海燕  张志凌  田智全  庞代文 《化学进展》2007,19(12):1861-1865
生命体系中化学、生物信息的活体、原位、实时、动态和高灵敏获取,是当前生命科学研究中迫切需要解决的关键问题之一,发展相关的新技术与新方法至关重要。半导体荧光量子点因其优异的荧光特性可望在解决此类难题中发挥重要作用而日益受到关注。本文将根据我们课题组多年来的研究工作经验,就半导体荧光量子点标记技术的相关基础问题、在生物医学领域中的应用以及发展前景等做简要评述。  相似文献   

17.
While carbon dots (C‐dots) have been extensively investigated pertaining to their fluorescent, phosphorescent, electrochemiluminescent, optoelectronic, and catalytic features, their inherent chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) properties are unknown. By virtue of their hydrophilicity and abundant exchangeable protons of hydroxyl, amine, and amide anchored on the surface, we report here that C‐dots can be adapted as effective diamagnetic CEST (diaCEST) MRI contrast agents. As a proof‐of‐concept demonstration, human glioma cells were labeled with liposomes with or without encapsulated C‐dots and implanted in mouse brain. In vivo CEST MRI was able to clearly differentiate labeled cells from non‐labeled cells. The present findings may encourage new applications of C‐dots for in vivo imaging in deep tissues, which is currently not possible using conventional fluorescent (near‐infrared) C‐dots.  相似文献   

18.
量子点在生物检测中的应用   总被引:1,自引:0,他引:1  
过去十几年里,量子点从材料科学到生命科学、从基础研究到实际应用都开展了广泛的研究。 量子点在生物成像、光治疗、药物/基因转运、太阳能电池等领域均具有广泛的应用。 通过调节量子点的表面性质,实现量子点与细胞相互作用的可控性是一个关键的问题。 伴随着量子点潜在毒性问题的产生,纳米毒性成为纳米材料安全性评估的重要指标,并且受到科学家们的高度关注。 本文综述了量子点的特性、细胞生物学应用及在生物医药领域相关的细胞毒性研究,并展望了量子点的未来发展趋势。  相似文献   

19.
This critical review covers the use of carbon nanomaterials (single-wall carbon nanotubes, multi-wall carbon nanotubes, graphene, and carbon quantum dots), semiconductor quantum dots, and composite materials based on the combination of the aforementioned materials, for analytical applications using electrogenerated chemiluminescence. The recent discovery of graphene and related materials, with their optical and electrochemical properties, has made possible new uses of such materials in electrogenerated chemiluminescence for biomedical diagnostic applications. In electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), electrochemically generated intermediates undergo highly exergonic reactions, producing electronically excited states that emit light. These electron-transfer reactions are sufficiently exergonic to enable the excited states of luminophores, including metal complexes, quantum dots and carbon nanocrystals, to be generated without photoexcitation. In particular, this review focuses on some of the most advanced and recent developments (especially during the last five years, 2010–2014) related to the use of these novel materials and their composites, with particular emphasis on their use in medical diagnostics as ECL immunosensors.  相似文献   

20.
姜鹏  刘义 《化学通报》2016,79(11):993-1000
量子点具有优异的光学性能及丰富的表面化学性质,在生物医学分析领域具有较好应用前景。近红外窗口生物成像所具有的背景干扰小、穿透深度大等特点,使得近红外量子点在生物成像应用中更具优势。本文介绍了近红外量子点从早期含Cd、含Pb量子点到近年来新型无Cd、无Pb量子点的发展历程,以及其在生物医学成像领域的应用,着重介绍了新型低毒性近红外量子点的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号