首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A single-exponential growth estimate of the solutions to the 2-dimensional Navier–Stokes equations in the whole space for nondecaying initial velocity is established. The crucial idea is to decompose velocity into high and low frequency parts. Moreover, if the linear term and the vorticity decay exponentially, the velocity is bounded uniformly in time.   相似文献   

2.
Long-Time Asymptotics of Kinetic Models of Granular Flows   总被引:1,自引:0,他引:1  
We analyze the long-time asymptotics of certain one-dimensional kinetic models of granular flows, which have been recently introduced in [22] in connection with the quasi-elastic limit of a model Boltzmann equation with dissipative collisions and variable coefficient of restitution. These nonlinear equations, classified as nonlinear friction equations, split naturally into two classes, depending on whether or not the temperature of their similarity solutions (homogeneous cooling states) reduce to zero in finite time. For both classes, we show uniqueness of the solution by proving decay to zero in the Wasserstein metric of any two solutions with the same mass and mean velocity. Furthermore, if the temperature of the similarity solution decays to zero in finite time, we prove, by computing explicitly upper bounds for the lifetime of the solution in terms of the length of the support, that the temperature of any other solution with initially bounded support must also decay to zero in finite time.  相似文献   

3.
In this paper we study the two dimensional Ericksen–Leslie equations for the nematodynamics of liquid crystals if the moment of inertia of the molecules does not vanish. We prove short time existence and uniqueness of strong solutions for the initial value problem in two situations: the space-periodic problem and the case of a bounded domain with spatial Dirichlet boundary conditions on the Eulerian velocity and the cross product of the director field with its time derivative. We also show that the speed of propagation of the director field is finite and give an upper bound for it.  相似文献   

4.
This paper is concerned with the strong solutions to the Cauchy problem of a simplified Ericksen-Leslie system of compressible nematic liquid crystals in two or three dimensions with vacuum as far field density. For strong solutions, some a priori decay rate (in large time) for the pressure, the spatial gradient of velocity field and the second spatial gradient of liquid crystal director field are obtained provided that the initial total energy is suitably small. Furthermore, with the help of the key decay rates, we establish the global existence and uniqueness of strong solutions (which may be of possibly large oscillations) in two spatial dimensions.  相似文献   

5.
We show that any weak solution to the full Navier–Stokes–Fourier system emanating from the data belonging to the Sobolev space W 3,2 remains regular as long as the velocity gradient is bounded. The proof is based on the weak-strong uniqueness property and parabolic a priori estimates for the local strong solutions.  相似文献   

6.
We are concerned with global existence and uniqueness of strong solutions for a general model of viscous and heat-conductive gases. The initial data are supposed to be close to a stable equilibrium with constant density and temperature. Using uniform estimates for the linearized system with a convection term, we get global well-posedness in a functional setting invariant with respect to the scaling of the associated equations (in space dimension N≧3). We also show a smoothing effect on the velocity and the temperature, and a decay on the difference between the density and the constant reference state. These results extend a previous paper devoted to the barotropic case (see [5]).  相似文献   

7.
Because pressure is determined globally for the incompressible Euler equations, a localized change to the initial velocity will have an immediate effect throughout space. For solutions to be physically meaningful, one would expect such effects to decrease with distance from the localized change, giving the solutions a type of stability. Indeed, this is the case for solutions having spatial decay, as can be easily shown. We consider the more difficult case of solutions lacking spatial decay, and show that such stability still holds, albeit in a somewhat weaker form.  相似文献   

8.
We investigate the incompressible Navier–Stokes equations with variable density. The aim is to prove existence and uniqueness results in the case of discontinuous initial density. In dimension n = 2,3, assuming only that the initial density is bounded and bounded away from zero, and that the initial velocity is smooth enough, we get the local-in-time existence of unique solutions. Uniqueness holds in any dimension and for a wider class of velocity fields. In particular, all those results are true for piecewise constant densities with arbitrarily large jumps. Global results are established in dimension two if the density is close enough to a positive constant, and in n dimensions if, in addition, the initial velocity is small. The Lagrangian formulation for describing the flow plays a key role in the analysis that is proposed in the present paper.  相似文献   

9.
Initial-boundary value problem for linearized equations of viscous barotropic fluid motion in a bounded domain is considered. Existence, uniqueness and estimates of weak solutions to this problem are derived. Convergence of the solutions towards the incompressible limit when compressibility tends to zero is studied.  相似文献   

10.
We prove existence and uniqueness of global classical solutions to the generalized large-scale semigeostrophic equations with periodic boundary conditions. This family of Hamiltonian balance models for rapidly rotating shallow water includes the L 1 model derived by R. Salmon in 1985 and its 2006 generalization by the second author. The results are, under the physical restriction that the initial potential vorticity is positive, as strong as those available for the Euler equations of ideal fluid flow in two dimensions. Moreover, we identify a special case in which the velocity field is two derivatives smoother in Sobolev space as compared to the general case. Our results are based on careful estimates which show that, although the potential vorticity inversion is nonlinear, bounds on the potential vorticity inversion operator remain linear in derivatives of the potential vorticity. This permits the adaptation of an argument based on elliptic L p theory, proposed by Yudovich in 1963 for proving existence and uniqueness of weak solutions for the two-dimensional Euler equations, to our particular nonlinear situation.  相似文献   

11.
We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.  相似文献   

12.
The global existence of strong solutions of the initial boundary-value problem in bounded domains to the system of partial differential equations for viscous compressible polytropic multipolar fluids is proved. Some other properties such as uniqueness and cavitation are discussed.  相似文献   

13.
Within the framework of the magnetohydrodynamic approach, a system of equations is derived for nonlinear evolution of long-wave axisymmetric perturbations on a conducting fluid jet with surface electric current, located along the axis of a conducting solid cylinder in a longitudinal magnetic field. The fluid is assumed to be inviscid, incompressible, and ideally conducting, like the cylinder walls. It is shown that, if the longitudinal field is uniform and the axial flow is shear-free, this system can be either hyperbolic or elliptic-hyperbolic, depending on problem parameters. The boundaries of hyperbolicity and ellipticity regions in the space of solutions are determined. In the hyperbolicity region, equations of characteristics and conditions on them are obtained. The problem of the decay of velocity discontinuity on the jet is considered. Conditions are found for the existence of a continuous self-similar solution in the hyperbolicity region, corresponding to collision of jets.  相似文献   

14.
This paper is concerned with the existence and uniqueness of pseudo almost periodic solutions to a class of semilinear differential equations involving the algebraic sum of two (possibly noncommuting) densely defined closed linear operators acting on a Hilbert space. Sufficient conditions for the existence and uniqueness of pseudo almost periodic solutions to those semilinear equations are obtained. An erratum to this article is available at .  相似文献   

15.
In the present paper, we investigate t α-type Navier–Stokes equations introduced in a previous paper of Tu–Zhai. The existence and uniqueness results are given in L p space. Moreover, the regularizing decay rate estimates and high order approximation are derived for these solutions.  相似文献   

16.
We study gas flows with any finite number of thermal nonequilibrium modes. The equations describing such flows are a hyperbolic system with several relaxation equations. An important feature is entropy increase dictated by physics for any irreversible process. Under physical assumptions we obtain properties of thermodynamic variables relevant to stability. By the energy method we prove global existence and uniqueness for the Cauchy problem when the initial data are small perturbations of constant equilibrium states. We give a precise formulation of the fundamental solution for the linearized system, and use it to obtain large time behavior of solutions to the nonlinear system. In particular, we show that the entropy increases but stays bounded. The resulting asymptotic picture of nonequilibrium flows is in a pointwise sense both in space and in time.  相似文献   

17.
The large-time asymptotic behavior of classical solutions to the density-dependent incompressible Navier–Stokes equations driven by an external force on bounded domains in 2-D is studied. It is shown that the velocity field and its first-order derivatives converge to zero as time goes to infinity for large initial data and external forces.  相似文献   

18.
We study the propagation of singularities in solutions of the Navier–Stokes equations of compressible, barotropic fluid flow in two and three space dimensions. The solutions considered are in a fairly broad regularity class for which initial densities are nonnegative and essentially bounded, initial energies are small, and initial velocities are in certain fractional Sobolev spaces. We show that, if the initial density is bounded below away from zero in an open set V, then each point of V determines a unique integral curve of the velocity field and that this system of integral curves defines a locally bi-Hölder homeomorphism of V onto its image at each positive time. This “Lagrangean structure” is then applied to show that, if the initial density has a limit at a point of such a set V from a given side of a continuous hypersurface in V, then at each later time both the density and the divergence of the velocity have limits at the transported point from the corresponding side of the transported hypersurface, which is also a continuous manifold. If the limits from both sides exist, then the Rankine–Hugoniot conditions hold in a strict pointwise sense, showing that the jump in the divergence of the velocity is proportional to the jump in the pressure. This leads to a derivation of an explicit representation for the strength of the jump in the logarithm of the density, from which it follows that discontinuities persist for all time, convecting along fluid particle paths, and in the case that the pressure is strictly increasing in density, having strengths which decay exponentially in time.  相似文献   

19.
The focus of the present study is to obtain exact solutions for the flow of a viscous hydromagnetic fluid due to the rotation of an infinite disk in the presence of an axial uniform steady magnetic field with the inclusion of Hall current effect. In place of the traditional von Karman's axisymmetric evolution of the flow, the rotational non-axisymmetric stationary conducting flow is taken into consideration here, whose governing equations allow an exact solution to develop bounded everywhere in the normal direction to the wall.The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions, which differ from those of corresponding to the classical von Karman's conducting flow. Making use of this solution, analytical formulas for the angular velocity components, for the current density field as well as for the wall shear stresses are extracted. The critical peripheral locations at which extrema of the local skin friction occur are also determined. It is proved from the analytical results that for the specific flow the properly defined thicknesses decay as the magnetic field strength increases in magnitude, approaching their hydrodynamic value in the limit of large Hall numbers.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. The temperature field is shown to accord with the dissipation function. According to the Fourier's heat law, a constant heat transfer from the disk to the fluid occurs, though it increases by the presence of magnetic field, the increase is slowed down by the Hall effect eventually reaching its hydrodynamic limit.  相似文献   

20.
In this paper, the uniqueness of solution for internal bounded unsteady flows of a shortmemory fluid is first established. Closed-form solutions are then obtained for the equations characterizing flows of such fluids in circular and rectangular tubes of uniform cross-section under an arbitrary pressure gradient. Special cases including the oscillatory flow between two parallel plates are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号