首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

2.
Resource utilization is a critical pathway for sustainable solid waste treatment. Biochar was prepared from the co-pyrolysis of sewage sludge and tea waste. Brunauer–Emmett–Teller measurement, scanning electron microscopy and Fourier transform infrared analysis were employed to characterize the biochar. Then, the interface behavior between biochar and Cd from aqueous solution was investigated. The effect of adsorbent dose and pH on Cd adsorption was evaluated. Adsorption kinetics and the adsorption isotherm were studied, and the adsorption mechanism was explored. The results showed that the suitable adsorbent dose was 4 g L?1 and the optimal pH of the Cd solution remained at 6.0. Cadmium sorption on the biochar could be well described by the pseudo-second order kinetic model (R 2 > 0.98). The adsorption process was described using the Langmuir (R 2 > 0.86), Freundlich (R 2 > 0.86), Temkin (R 2 > 0.84) and Dubinin–Radushkevich (R 2 > 0.86) isotherm models. The proportion of organic constituents in biochar was 69.2–72.4%. Minerals that originated in biochar played an important role during the Cd adsorption process, and the contribution of minerals accounted for 27.6–30.8% of the total adsorption. The main mechanism of the Cd adsorption process by biochar involved ion exchange, surface complexation, electrostatic interaction, surface co-precipitation, and other mechanisms. Therefore, biochar created by the co-pyrolysis of sewage sludge and tea waste could be used as an adsorbent for the removal of metal ions from contaminated water.  相似文献   

3.
A radiochemical purification procedure was developed for the separation of enriched cadmium (111Cd and 112Cd) from natural copper that used as backing; and was based upon the chromatographic adsorption. The separation of copper from cadmium was studied in this work. The ions were selectively separated from aqueous solution. Ion-exchange chromatography was employed as a column (1.5 cm i.d. and 15 cm length) with AG1-X8 resin (chloride form, 100–200 mesh) and a flow rate of 1–2 ml/min throughout the separation. 6 M HCl media was used for the adsorption of Cd and Cu on the resin. Then, Cu was eluted by 2 M HCl and Cd by 100 ml 0.5 M HNO3. The amount of Cu and Cd ions in the final solution (0.5 M HNO3) were measured by pulse polarographic method and the concentration of Cu was found to be <0.1 ppm. The Cd was quantitatively recovered and the recovery yield from ion-exchange chromatography was greater than 96 %.  相似文献   

4.
The current paper presents a novel Pb(II) ion-imprinted silica-supported organic–inorganic hybrid sorbent functionalized with Schiff base by coupling a surface imprinting technique with a sol–gel process for the selective removal of Pb(II) ions from aqueous solution. Fourier transmission infrared spectroscopy, scanning electron microscopy, N2 adsorption–desorption isotherms and thermogravimetric analysis were used to characterize the Pb(II)-imprinted hybrid sorbent. The adsorption equilibrium was finished with 30 min. The experiment value of maximum adsorption capacity was found to be 54.9 mg g?1. There were not significantly influence on the adsorption capacity of Pb(II) in the range of pH 3.5–6.5. The equilibrium data were fitted very well to the Langmuir isotherm model and pseudo-first-order kinetics model. Under competitive adsorption conditions, the Pb(II)-imprinted hybrid sorbent was 3.09, 4.73, 3.34 and 4.96 times more selective than the corresponding non-imprinted sorbent for the systems of Pb(II)/Cu(II), Pb(II)/Cd(II), Pb(II)/Ni(II) and Pb(II)/Zn(II), respectively. The thermodynamic results demonstrated that the adsorption of Pb(II) onto the Pb(II)-imprinted hybrid sorbent took place by a spontaneous and endothermic process with further increase in the degree of freedom at the solid–solution interface.  相似文献   

5.
A Cd(II)-imprinted thiocyanato-functionalized silica gel adsorbent with high adsorption capacity was prepared by surface imprinting technique combined with sol–gel process for the selective adsorption of Cd(II) ion in aqueous solution, and was characterized by Fourier-transform infrared spectroscopy, nitrogen gas sorption and thermogravimetric analysis. The influences of different conditions (such as the pH of solutions, the contact time and the initial concentrations of Cd(II) ions) on the adsorption capacity of Cd(II) were investigated. The optimum pH of adsorption was in the range of 4–8.5. The adsorption equilibrium could be reached in 20 min. The relatively selectivity coefficients of the imprinted silica were higher than those of the non-imprinted adsorbents. Ho’s pseudo-second-order model well described the kinetics of the adsorption reaction. The adsorption process of metals followed Redlich–Peterson isotherm model, and the experimental value of maximum adsorption capacity for Cd(II) was 72.8 mg·g?1. The positive value of ΔH o suggested endothermic nature of Cd(II) adsorption on the imprinted silica adsorbent. Increase in entropy of adsorption reaction was shown by the positive value of ΔS o and the negative value of ΔG o indicating that the adsorption was spontaneous in nature.  相似文献   

6.
With increasing industrial development, heavy metal pollution, e.g., cadmium (Cd) pollution, is increasingly serious in soil and water environments. This study investigated the sorption performance of nano-montmorillonite (NMMT) for Cd ions. Adsorption experiments were carried out to examine the effects of the initial metal ion concentration (22.4–224 mg/L), pH (2.5–7.5), contact time (2–180 min) and temperature (15–40 °C). A simulated acid rain solution was prepared to study the desorption of Cd adsorbed on NMMT. After the adsorption or desorption process, the supernatant was analyzed using a flame atomic absorption spectrometry method. The Cd removal rate increased as the pH and contact time increased but decreased as the initial metal ion concentration increased. The maximum adsorption capacity was estimated to be 17.61 mg/g at a Cd2+ concentration of 22.4 mg/L. The sorption process can be described by both the Langmuir and Freundlich models, and the kinetic studies revealed that the pseudo-second-order model fit the experimental data. The Cd desorption rate when exposed to simulated acid rain was less than 1%. NMMT possesses a good adsorption capacity for Cd ions. Additionally, ion exchange was the main adsorption mechanism, but some precipitation or surface adsorption also occurred.  相似文献   

7.
Novel type hydrogel‐clay nanocomposites based on the acrylamide (AAm)‐ 2‐acrylamido‐ 2‐methylpropane sulfonic acid (AMPS) sodium salt and clay were synthesized via in situ copolymerization in aqueous solution. Samples were characterized by determining total basic group (TGB) content and swelling degree, XRD analysis, and FTIR spectroscopy. Effects of monomer ratio and clay amount on the swelling properties of the samples were investigated. It was found that the hydrogel/clay nanocomposites exhibited improved swelling capacity compared with the hydrogels. Samples were used to remove heavy metal ions (Cu (II), Cd (II), and Pb (II)) from aqueous solution in competitive and non‐competitive conditions for the first time. The effects of time and pH of the initial metal ion solution on the adsorption capacity were investigated and selectivity properties of the samples were evaluated. It was found that incorporation of a low amount of clay (10% (wt)) into the polymer structure increased the heavy metal ion adsorption capacity of the sample. It was concluded that the AAm‐AMPS/clay nanocomposites could be used as novel type, fast‐responsive, and high capacity sorbent materials in heavy metal removing processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The photosensitized degradation of 4-chlorophenol (4-CP) under visible light (lambda > or = 450 nm) irradiation in an aerated aqueous medium at pH 12 was studied using an immobilized photosensitizer, aluminum tetrasulfophthalocyanine, on a commercial resin Amberlite IRA 400. The catalyst exhibited strong adsorption toward 4-CP, but the adsorption led to an exponential decrease in both the initial rate and the apparent first-order rate constant, as measured by 4-CP loss in the bulk solution. Several intermediates were formed from 4-CP oxidation, including fumaric acid, benzoquinone, and hydroquinone, which were adsorbed strongly on the catalyst and lowered the photosensitized reaction. Addition of H2O2 was found to be an efficient way to eliminate the colored intermediates and consequently recover the catalyst activity. The immobilized sensitizer was stable and could be used repeatedly in the presence of H2O2. The optimal loading of the photosensitizer in the catalyst was about 1.0 wt %.  相似文献   

9.
In this paper, rape stalk was modified with citric acid (CA) to prepare copper ion biosorbent. The modified rape stalk (MRS) was characterized by Fourier transforms infrared (FTIR), zeta potential, and thermogravimetric analysis (TGA). The effects of various parameters like initial Cu2+ concentration, contact time, initial pH, and temperature on adsorption capacity were studied. The adsorption capacity of MRS at 298 K was 69.84 mg/g, far higher than 18.24 mg/g for native rape stalk (NRS). The adsorption mechanism was also evaluated in terms of kinetics and thermodynamics. The adsorption equilibrium data was well described by the Langmuir isotherm model. The adsorption process followed the pseudo-second-order rate kinetics. Thermodynamic study showed spontaneous and endothermic nature of the adsorption process. The ion exchange of the adsorption mechanism was affirmed. MRS could be a potentially low-cost and green adsorbent for removal of Cu2+ from aqueous solution.  相似文献   

10.
The present study was conducted to develop a simple and versatile method to prepare carboxylated bamboo fibers which can be applied as potential bio-adsorbent for metal ions removal due to the high content of carboxyl groups. The chemical modification of bamboo fibers with citric acid (CA) was carried out by friendly semi-dry oven method. The resulting products with carboxyl group content between 1.99 and 4.13 mmol/g were accessible by changing ultrasonic pretreatment time, reaction temperature, reaction time and the amounts of catalyst and citric acid in order to minimize cross-linking reaction and thereby maximize carboxyl groups content. The characterization of the resulting products confirmed that carboxyl groups were successfully grafted onto surface of bamboo fibers. Moreover, the carboxylated bamboo fibers could be applied as bio-adsorbent for the removal of lead(II) ions from aqueous solution. Results showed that the adsorption capacity of Pd2+ could reach 127.1 mg/g for carboxylated bamboo fibers with 4.13 mmol/g carboxyl group content prepared under the ultrasonic pretreatment for 20 min at the CA/bamboo fibers weight ratio of 4.0 in the catalyst amount of 30 wt% at 120 °C for 90 min and the carboxylated bamboo fibers exhibited highly efficient regeneration with no significant loss of adsorption capacity of lead ion after five repeated adsorption/desorption cycles.  相似文献   

11.
Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) nanotubes were evaluated as an efficient adsorbent for the removal of Rhodamine B (RhB), a cationic dye from aqueous solution. The as-synthesized adsorbent (PZS nanotubes) were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption isotherms. The factors influencing the adsorption efficiency and capacity had been systematically studied. Results showed that the adsorption was highly dependent on temperature, initial RhB concentration and adsorbent dose. Effects of initial solution pH indicate that the adsorption can proceed in both basic and acidic environment. The equilibrium absorption capacity at 25°C can reach up to 35.58 mg/g within 60 min implying the adsorption procedure was highly rapid. The kinetic data was better described by the pseudo-second-order model with the correlation coefficient (R2 = 0.9981), and the adsorption process followed Weber's intraparticle model, indicating the adsorption process could be divided into two stages. Results also showed that the adsorption equilibrium obeyed the Langmuir isotherm, and the value of equilibrium parameter RL suggested that the PZS nanotubes were an efficient adsorbent for the removal of RhB from aqueous solution.  相似文献   

12.
A study was conducted concerning the preparation and application of a novel synthetic oxide adsorbent of MgO-SiO2 type. The material was prepared via a sol–gel route, utilizing magnesium ethoxide and tetraethoxysilane as precursors of magnesium oxide and silica respectively, and ammonia as a catalyst. The powder was comprehensively analyzed with regard to chemical composition (EDS method), crystalline structure, morphology, characteristic functional groups, electrokinetic stability and porous structure parameters (BET and BJH models). The synthesized oxide adsorbent is amorphous, with irregularly shaped particles, a relatively large surface area of 612 m2/g, and negative surface charge over almost the whole pH range. Comprehensive adsorption studies were performed to investigate the adsorption of Cd(II) and Pb(II) ions on the MgO–SiO2 oxide adsorbent, including evaluation of adsorption kinetics and isotherms, the effect of pH, contact time and mass of adsorbent. It was shown that irrespective of the conditions of the adsorption process, the synthesized MgO–SiO2 adsorbent exhibits slightly better affinity to lead(II) than to cadmium(II) ions (sorption capacity of 102.02 mg(Pb2+)/g and 94.05 mg(Cd2+)/g). The optimal time for removal of the analyzed metal ions was 60 min, although adsorption reached equilibrium within 10 min for Pb(II) and within 15 min for Cd(II) ions, which was found to fit well with a type 1 pseudo-second-order kinetic model. Additionally, adsorption efficiency was affected by the pH of the reaction system—better results were obtained for pH ≥7 irrespective of the type of metal ion.  相似文献   

13.
The effects of pH, metal ions (i.e. Cu2+, Cd2+, Pb2+ and Zn2+) and natural organic matter (i.e. Suwannee River natural organic matter standard [SRNOM]) on determination of thiol (i.e. reduced glutathione [GSH]) by cathodic stripping voltammetry were evaluated. pH was the most critical parameter to influence GSH voltammogram (i.e. peak shape, position and height). In presence of Cu and Cd, secondary peaks were found at [metal]/GSH > 1 due to formation of GSH complexes at pH = 8.0 (Cu and Cd) and 2.5 (Cu only). On the other hand, Pb showed negligible influence on GSH voltammogram at pH 8.0 and 2.5 within [Pb]/[GSH] = 0.01–2.0. Zn significantly reduced GSH peak height at pH 2.5 at [Zn]/[GSH] = 0.01–2.0. SRNOM peak significantly overlapped with GSH peak at pH 8.0 and [SRNOM] > 1 mg L?1 but was clearly separated from the GSH peak at pH 2.5. However, at pH 2.5, the presence of metal ions and/or SRNOM significantly underestimated GSH concentration (recovery = 21–69%), likely due to metal complexation with GSH and/or SRNOM adsorption onto Hg electrode. The effects of metal ions were minimised by the addition of EDTA. The interference induced by SRNOM adsorption was reduced as the [SRNOM] was reduced to 1 mg L?1 and the recovery was improved to 98%.  相似文献   

14.
Acrylamide (AAm)‐2‐acrylamide‐2‐methylpropanesulfonic acid sodium salt (AMPSNa) hydrogel and AAm‐AMPSNa/clay hydrogel nanocomposite having 10 w% clay was prepared by in situ copolymerization in aqueous solution in the presence of a crosslinking agent (N,N′‐methylenebisacrylamide (NMBA)). Swelling properties and kinetics of the hydrogel samples were investigated in water and aqueous solutions of the Safranine‐T (ST) and Brilliant Cresyl Blue (BCB) dyes. The swelling and diffusion parameters were also calculated in water and dye solutions. It was observed that the AAm‐AMPSNa/clay hydrogel nanocomposite exhibits improved swelling capacity compared with the AAm‐AMPSNa hydrogel. It was also found that the diffusion mechanisms show non‐Fickian character. Adsorption properties of the hydrogel samples in the aqueous solution of ST and BCB dyes were also investigated. Clay incorporation into the hydrogel structure increased not only the adsorption capacity but also the adsorption rate. Adsorption capacity values of the hydrogel nanocomposite were found to be 484.2 and 494.2 mg g?1 for the ST and BCB dyes, respectively. It was seen that the adsorption of dyes by the hydrogel nanocomposite completed in 10 min while the AAm‐AMPSNa hydrogel adsorbed dyes approximately in 90 min. Adsorption data of the samples were modelled by the pseudo‐first‐order and pseudo‐second‐order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of hydrogel nanocomposite followed a pseudo‐second‐order model. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Langmuir model fits the adsorption data better than the Freundlich model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Uranium is a toxic and radioactive heavy metal found in nuclear effluents and should be treated based on environmental considerations. The adsorption of uranyl cations (UO2 2+) by apricot shell activated carbon (ASAC) was investigated in a batch system. The effects of pH, contact time, temperature, adsorbent dosage on the adsorption kinetics and equilibrium adsorption isotherms of U(VI) were examined. The U(VI) uptake was fast within the first 60 min and reached an equilibrium state at 120 min. The adsorption process was highly pH dependent and the maximum adsorption was obtained at an initial solution pH of 6.0. Temperature over the range 25–45 °C had little effect on the U(VI) adsorption. The U(VI) removal efficiency increased concurrently with increasing ASAC dosage, whereas the U(VI) adsorption capacity decreased with increasing ASAC dosage. The adsorption process followed both Langmuir and Freundlich isotherms. On the basis of Langmuir model, the maximum adsorption capacity was found to be 59.17 mg U(VI)/g adsorbent. The adsorption kinetics can be very well defined by the pseudo-first-order rate model. The present results suggest that ASAC could be used as an adsorbent for an efficient removal of U(VI) from aqueous solution.  相似文献   

16.
A new Cu(II) ion-imprinted sorbent was synthesized by a surface imprinting technique and characterized by FT-IR and SEM. Compared to the non-imprinted sorbent, the Cu(II) ion-imprinted sorbent had a higher adsorption capacity and selectivity for Cu(II). The static adsorption capacity of the Cu(II) ion-imprinted sorbent and non-imprinted sorbent for Cu(II) were 84.5 and 46.5 μmol?g?1, respectively. The best selectivity coefficient over Zn(II) or Cd(II) ion was over 12. The relative selectivity coefficients of the sorbent for Cu(II) in the presence of Zn(II) and Cd(II) were 13 and 35, respectively. Furthermore, the new sorbent possessed a fast kinetics for Cu(II) sorption from aqueous solution with saturation time of <30 min, and could be used repeatedly. The standard deviation for 11 replicate determinations of 0.5 mg?L?1 Cu(II) was 0.8%. This new Cu(II) ion-imprinted sorbent can be used as an effective solid-phase extraction material for the selective preconcentration and separation of Cu(II).  相似文献   

17.
Adsorption of phenol from an aqueous solution in batch and continuous flow systems using carbon gels with a microhoneycomb structure (carbon gel microhoneycombs, CMHs) was studied. The obtained monolithic CMHs had fairly straight channels, 25–45 μm in diameter, and the thickness of the walls which form the channels was around 5 μm. The CMHs showed 370 times lower hydraulic resistance when compared with a column packed with particles having the same diffusion path length as it. The obtained CMHs have a hierarchical micro-meso porous structure giving BET surface area in the range of 513–1070 m2·g?1.When used for phenol adsorption from an aqueous solution, the CMHs quickly adsorbed phenol at first, and then, the uptake gradually increased, which indicates that the adsorption mechanism is based on not only simple physisorption. The phenol adsorption capacity increased with the increase in carbonization temperature of the CMH and the decrease in its hydrophilicity. CMHs carbonized at temperatures higher than 1073 K showed the highest phenol adsorption capacity which was around 160 mg·g?1. The CMHs could continuously adsorb phenol from aqueous solutions, and their length of unused bed (LUB) values depended on operation conditions but were in the range of 0.3–0.7 cm. The experimental results indicated that carbon cryogels with a microhoneycomb structure have a high potential to be used for effective separation of phenol.  相似文献   

18.
This study aims to clarify the effects of carbon activation type and physical form on the extent of adsorption capacity and desorption capacity of a bi-solute mixture of phenol and 2-chlorophenol (2-CP). For this purpose, two different PACs; thermally activated Norit SA4 and chemically activated Norit CA1, and their granular countertypes with similar physical characteristics, thermally activated Norit PKDA and chemically activated Norit CAgran, were used. The thermally activated carbons were better adsorbers for phenol and 2-CP compared with chemically activated carbons, but adsorption was more reversible in the latter case. 2-CP was adsorbed preferentially by each type of activated carbon, but adsorption of phenol was strongly suppressed in the presence of 2-CP. The simplified ideal adsorbed solution (SIAS) model underestimated the 2-CP loadings and overestimated the phenol loadings. However, the improved and modified forms of the SIAS model could better predict the competitive adsorption. The type of carbon activation was decisive in the application of these models. For each activated carbon type, phenol was desorbed more readily in the bi-solute case, but desorption of 2-CP was less compared with single-solute. This was attributed to higher energies of 2-CP adsorption.  相似文献   

19.
The removal of methyl green (MG) dye from aqueous solutions using acid- or alkali-treated Pinus brutia cones (PBH and PBN) waste was investigated in this work. Adsorption removal of MG was conducted at natural pH, namely, 4.5 ± 0.10 for PBH and near 4.8 ± 0.10 for PBN. The pseudo-second-order model appeared to be the most appropriate to describe the adsorption process of MG on both PBN and PBH with a correlation coefficient R2 > 0.999. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P. brutia cones with a correlation factor R2 > 0.999. The ionic strength (presence of other ions: Cl?, Na+, and SO42?) also influences the adsorption due to the change in the surface properties; it had a negative impact on the adsorption of MG on these two supports. A reduction of 68.5% of the adsorption capacity for an equilibrium dye concentration Ce of 30 mg/L was found for the PBH; while with PBN no significant influence of the ionic strength on adsorption was observed, especially in the presence of NaCl for dye concentrations superior to 120 mg L?1.  相似文献   

20.
The adsorption of a cationic dye, Basic Blue 16 (BB16), by montmorillonitic clay was studied in detail. Changes in the molecular structure during adsorption were analyzed by FTIR spectroscopy. BB16 adsorption onto the clay mainly results from hydrogen bonding between OH and NH2 groups of dye molecules and OH groups of clay and electrostatic interaction between the negatively charged clay surface and cationic dye. The montmorillonitic clay dose had an inverse effect on the adsorption performance, while the highest dye removal was 305 mg/g at pH 3.6. An increase in temperature and dye concentration positively enhanced the adsorption capacity of the montmorillonitic clay. Temperature had no effect on the adsorption at a dye concentration less than 500 mg/L, while dye adsorption was positively enhanced at elevated dye concentrations. Three-parameter equations provided higher better fitting than two-parameter equations while the Freundlich model had the highest correlation coefficient and the lowest error values with experimental data. The BB16 adsorption was well followed by pseudo-second order model and the rate of adsorption process was controlled by surface and intraparticle diffusion. Thermodynamic evaluations revealed that the adsorption process was spontaneous and endothermic, while the randomness increased during adsorption. Experimental results indicate that montmorillonitic clay from Eskisehir is a promising adsorbent for the removal of cationic dye molecules from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号