首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogenolysis of dimethyl disulfide in the presence of Ni,Mo and Co,Mo bimetallic sulfide catalysts was studied at atmospheric pressure and T = 160–400°C. At T ≤ 200°C, dimethyl disulfide undergoes hydrogenolysis at the S-S bond, yielding methanethiol in 95–100% yield. The selectivity of the reaction decreases with increasing residence time and temperature due to methanethiol undergoing condensation to dimethyl disulfide and hydrogenolysis at the C-S bond to yield methane and hydrogen sulfide. The specific activity of the Co,Mo/Al2O3 catalyst in hydrogenolysis at the S-S and C-S bonds is equal to or lower than the total activity of the monometallic catalysts. The Ni,Mo/Al2O3 catalyst is twice as active as the Ni/Al2O3 + Mo/Al2O3 or the cobalt-molybdenum bimetallic catalyst.  相似文献   

2.
CoMo/Al2O3 sulfide catalysts varying in preparation method and Co/Mo ratio have been tested in the hydrorefining of a mixture of straight-run diesel fraction and rapeseed oil in a flow reactor at a temperature of 340–360°C, a hydrogen pressure of 4.0–7.0 MPa, and a liquid hourly space velocity of 1–2 h?1. A comparison between catalysts prepared using citric acid (CoMo/Al2O3-1.5) and both citric and orthophosphoric acids (CoMoP/Al2O3-1.5) as promoters, with Co/Mo = 0.3 and 0.5, has demonstrated that the most active catalyst in hydrodesulfurization and hydrodenitrogenation is the phosphorus-containing Co/Mo ≈ 0.5 sample. The addition of rapeseed oil to straight-run diesel fraction lowers the hydrodesulfurization and hydrodenitrogenation activities of the CoMo sulfide catalysts, irrespective of the method by which they were prepared. The fatty acid triglyceride conversion selectivity of these catalysts depends on the Co/Mo ratio and on reaction conditions: decreasing the Co/Mo ratio from 0.46 to 0.26, lowering the reaction temperature, and raising the hydrogen pressure and hydrogen-to-feedstock ratio increase the C18/C17 hydrocarbon ratio in the hydrogenated product. The addition of rapeseed oil improves the quality of the product; however, for attaining the preset residual sulfur level in this case, the process needs to be conducted at a higher temperature than the hydrorefining of straight-run diesel fraction containing no admixture.  相似文献   

3.
Supported nickel–molybdenum and nickel–tungsten hydrocracking catalysts prepared using a support that consists of 70% Al2O3 and 30% amorphous aluminosilicate were characterized by nitrogen and mercury porosimetry, IR spectroscopy of adsorbed CO, and high-resolution electron microscopy. The catalytic tests in hydrocracking of vacuum gas oil containing 3.39% sulfur showed that the nature of the hydrogenating component (NiMo or NiW) only slightly influences the vacuum gas oil conversion and the diesel fraction yield, but noticeable influences the properties of the diesel fraction obtained. The catalyst NiMo/Al2O3–amorphous aluminosilicates, compared to NiW/Al2O3–amorphous aluminosilicates, ensures lower sulfur content in the diesel fraction obtained, whereas the catalyst NiW/Al2O3–amorphous aluminosilicates allows obtaining a diesel fraction with lower content of polyaromatic compounds.  相似文献   

4.
A series of transition metal-based catalysts, other than Pd or Pt-based catalysts, were investigated for catalytic amination of 2,6-dimethylphenol to 2,6-dimethylaniline in a fixed-bed reactor. Ni–Cu–Cr/γ-Al2O3 yielded satisfactory results with 82.08 % conversion and 47.24 % selectivity. The catalysts were characterized by H2-TPR and TEM, and the results obtained showed that the doped Cu and Cr could promote reduction of Ni/γ–Al2O3 and dispersion of the Ni. Reaction conditions, including reaction temperature, flow rate of hydrogen, and ammonia, were studied.  相似文献   

5.
Hydrogenation of furfurylidene acetone has been carried out using Ni/γ−Al2O3 and Cu/γ−Al2O3 catalyst in the presence of isopropanol in autoclave batch reactor. The hydrogenation using Cu/γ−Al2O3 at 120oC for 6 h gives main formation of 1,5-bis-(furan-2-yl)-pentan-3-one. Reaction at higher temperature at 140oC for 8 h using Ni/γ−Al2O3 leads to 1,5-bis-(furan-2-yl)-penta-1-en-3-one. The different selectivity of both catalysts is explained by physical properties including the surface area and distribution of metal loading.  相似文献   

6.
The activity of Pt, Rh, and Ni catalysts deposited on Al2O3 and tungsten-containing catalysts 20% H4SiW12O40/ZrO2 and 15% WOx/ZrO2 in the hydrogenation of toluene and toluene ring opening and isomerization in the presence of hydrogen was studied. Under experimental conditions (160–360°C, 2.2 MPa), the main reactions on Rh/Al2O3 were the hydrogenation of toluene into methylcyclohexane, hydrogenolysis into isoheptanes, and hydrocracking into alkanes C1–C6. On Pt, Rh, and Ni catalysts on carriers with strong acid properties, the isomerization of the six-membered into five-membered ring followed by hydrogenolysis (hydrocracking) of alkylcyclopentanes occurred. The yield of heptane isomers, however, did not exceed 13%. The activity of Pt and Rh catalysts on a high-acidity carrier (WOx/ZrO2) in hydrocracking was much higher than that of catalysts based on deposited heteropoly acid. The yields of hydrogenolysis (hydrocracking) products on Ni/WOx/ZrO2 were much lower than on Pt(Rh)/WOx/ZrO2. The highest yield of ring opening products (isoheptanes and n-heptane) was obtained with layered loading of two catalysts; it reached 58 wt % at 300°C and a 2.2 MPa pressure, which was 4.5 and 2 times higher than the yield obtained on Ni-Pt/WOx/ZrO2 and 2% Rh/Al2O3 catalysts. Hydrodemethylation was not the main direction of toluene transformations on any of the catalysts studied.  相似文献   

7.
In this work, the influence of metallic dopant addition in 10 wt % Ni/γ-Al2O3 catalyst on the material physico-chemical properties and catalytic activity for the toluene steam reforming was studied. Seventeen doped Ni/γ-Al2O3 catalysts were synthesized by the sol–gel process. The aim of this study was to determine which elements were the most suitable for the doping of 10 wt % Ni/γ-Al2O3 catalysts. The influence of the dopants was studied through different physico-chemical techniques. It appeared that some dopants showed lower catalytic performances due to high carbon deactivation. On the contrary, some dopants increased the resistance to coking while also improving the catalytic activity. Different mechanisms were proposed to explain these modifications of catalytic behavior. Among all doped Ni/γ-Al2O3 catalysts, the samples that combined Mn + Mo or Co + Mo dopants showed the best catalytic performances at 650 °C. Both samples showed high toluene reforming activity and low amounts of carbon deposit.  相似文献   

8.
A series of Ni–La/γ-Al2O3 catalysts were prepared by adopting the methods of isometric impregnation and microwave impregnation. The catalysts were characterized with XRD, BET, and SEM, respectively. Inspecting the effects of adding La and the methods of impregnation on the hydrogenation activity of catalysts. The results show that adding a moderate amount of La promotes the dispersing of Ni on the carrier, the methods of microwave impregnation weaks the interaction between Ni and the carrier further, inhibits the formation of NiAl2O4, and the activity of catalyst prepared by the methods of microwave impregnation was significantly higher than that prepared by the methods of isometric impregnation. The hydrogenation activity of the Ni–La/γ-Al2O3 (WB) dipped with n(Ni): n(La) = 4: 1, microwave irradiation time 30 min with power 600W as well as calcined at 400°C exhibited the best performance. The conversion rate is 91.21% with reaction conditions: T = 160°C, p = 0.8 MPa, air speed 5 h–1, n(H2): n(benzene) = 2: 1.  相似文献   

9.
Hydrotreating of light cycle oil over CoMo/Al2O3, NiMo/Al2O3 and NiW/Al2O3 catalysts has shown that the type of catalyst has a critical influence on the composition and properties of the product. Divergent effects of aromatics content and molecular weight on the cetane index by these catalysts occurred. Data show that it was not possible to obtain a diesel product that meets stringent specifications using one type of catalyst in a single-stage reactor even under severe operating conditions.  相似文献   

10.
HMCM‐22 catalysts modified with La2O3 (5% La) and MgO (≈0.87% Mg) were prepared respectively by impregnation method, and were characterized by scanning electron microscopy, X‐ray diffraction, N2 physical adsorption‐desorption and temperature‐programmed desorption of NH3. The effect of supported metallic oxides (La2O3, MgO) on catalytic performance in xylene isomerization of C8 aromatics (ethylbenzene, m‐xylene and o‐xylene) was investigated in detail. The experimental results showed that 5% La/HMCM‐22 catalyst had higher isomerization activity and stronger shape‐selectivity than 0.87% Mg/HMCM‐22 catalyst, owing to its more acid sites and smaller pore size. And the loading amount of La was optimized to be about 7%. Moreover, supporting metal over 7% La/HMCM‐22, respectively with 0.3% Pt, 3% Ni and 3% Mo, was carried out to prepare bifunctional isomerization catalysts. In comparison, 3% Mo/7% La/HMCM‐22 showed the best catalytic performance with both high activity and high selectivity, with the low hydrocracking of m‐xylene and o‐xylene. Besides, the optimal reaction conditions were found: 340°C, 1.5 MPa H2, WHSV 4 h?1 and H2/C8 4 mol/mol. Under the above conditions, ethylbenzene conversion was up to 20%, para‐selectivity was over 23% with low xylene loss of 2.9%.  相似文献   

11.
Production of middle distillate (C10–C20) from synthesis gas (CO + H2) through hydrocracking of wax (>C21+) was carried out in a dual-bed reactor. Fischer–Tropsch catalyst (Co/TiO2) was used in the first-bed reactor to produce wax from synthesis gas, and a mesoporous Pd–alumina composite catalyst (Pd–Al2O3) was used in the second-bed reactor to produce middle distillate through hydrocracking of wax. Both Fischer–Tropsch synthesis function of Co/TiO2 catalyst and hydrocracking function of Pd–Al2O3 catalyst were deactivated during 100 h-hybrid Fischer–Tropsch synthesis reaction. It was revealed that deactivation behaviors of Co/TiO2 and Pd–Al2O3 catalysts were governed by different factors. Wax accumulation and Co sintering were responsible for deactivation of Co/TiO2 catalyst in the Fischer–Tropsch synthesis reaction. Loss of Pd dispersion and Pd surface area of Pd–Al2O3 catalyst was responsible for its decreased catalytic performance in the production of middle distillate through hydrocracking of wax.  相似文献   

12.
The performance of Cu–Ni/LaZnAlO4 and Cu–Ni/γ-Al2O3 catalysts in the methanol reforming process in a monolith reactor in the temperature range of 200–350 °C, feed flow rate of WHSV = 20.8 h?1 and atmospheric pressure has been investigated. In order to perform a more thorough investigation, surface area, morphology and crystalline structure of the synthetic catalysts have been studied using BET, FE-SEM, TPR, FT-IR, TEM, TGA and XRD analyses. The results have shown that Cu–Ni/LaZnAlO4 catalyst synthesized by combustion reaction method under ultrasound irradiation has a very high efficiency and catalytic activity, low reduction temperature, high mechanical resistance and large pore sizes. The latter causes a higher percentage of active metal impregnation and better distribution on the support, greater resistance against sintering and maintenance of catalyst inertness at temperatures over 1000 °C, in comparison with conventional catalysts such as Cu–Ni/γ-Al2O3. This make its substitution for currently used catalysts affordable.  相似文献   

13.
Cumene hydrocracking was carried out over pure and doped Ni/Al2O3 solids and also, on these solids after exposure to different doses of γ-rays between 0.4 and 1.6 MGy. The dopant concentration was varied between 1 and 4 mol% CeO2. Pure and doped samples were subjected to heat treatment at 400°C and cumene hydrocracking reaction was carried out using various solids at temperatures between 250°C and 400°C by means of micropulse technique. The results showed that both CeO2 doping and γ-irradiation of the investigated system brought about an increase in its specific surface area. γ-irradiation of pure samples increased their catalytic activities effectively. However, the doping caused a decrease in the catalytic activity. γ-irradiation of the doped samples brought about a net decrease in the catalytic activity.The catalytic reaction products over different investigated solids were ethylbenzene as a major product together with different amounts of toluene, benzene and C1–C3 gaseous hydrocarbons. The selectivity towards the formation of various reaction products varies with the reaction temperature, doping and γ-irradiation.  相似文献   

14.
XMo6(S)/γ-Al2O3 and Ni-XMo6(S)/γ-Al2O3 catalysts based on Anderson heteropoly compounds (HPCs), where X = Al, Ga, In, Fe, Co, and Ni, were synthesized. The nature of the precursor HPC determines the activity of the catalysts in thiophene hydrogenolysis and diesel fuel hydrorefining in a flow-through setup. The activity of Ni-XMo6(S)/γ-Al2O3 with X = Al, Ga, and In in diesel fuel dehydrosulfurization increases in the order Al < Ga < In. For catalysts in which the heteroatom is an element of the iron triad, the order of the increasing activities is Fe < Co < Ni. The highest activity in both reactions was observed for catalysts based on InMo6-HPC and NiMo6-HPC: the residual sulfur in the hydrogenizates obtained over them at 320°C was 2.5 times lower than over a conventional ammonium paramolybdate-based catalyst, whereas the degree of hydrogenation of polycyclic aromatic hydrocarbons (PAH) was 15–16 rel. % higher.  相似文献   

15.
The structure, texture, and acid properties of platinum catalysts on oxide (Al2O3, ZrO2, ZrO2–Al2O3) and borate-containing supports (B2O3–Al2O3, B2O3–ZrO2) are studied. The catalysts are tested in the process of hydrocracking sunflower-seed oil at 380°C, 4.0 MPa, and a weight stock feed rate of 1.0 h–1. It has been found that aluminum oxide (A) contains the γ-Al2O3 phase, zirconium dioxide (Z) includes 85 and 15 rel. % of the monoclinic (M) and tetragonal (T) phases, respectively, while zirconium dioxide with the addition of 2.5 wt % Al2O3 (ZA) comprises 14 and 86 rel. % of the M–ZrO2 and T–ZrO2 phases, respectively. The B2O3–Al2O3 (BA) and B2O3–ZrO2 (BZ) systems modified with boron oxide (20 wt %) are X-ray amorphous. A Pt/BA catalyst differs from a Pt/A catalyst, while a Pt/BZ catalyst has a larger specific surface area and acidity than Pt/Z and Pt/ZA catalysts and contains Bronsted acidic centers (BACs) along with Lewis acidic centers (LACs). Only LACs are present on the surface of Pt/A, Pt/Z, and Pt/ZA catalysts. The LAC/BAC ratio in Pt/BA and Pt/BZ catalysts is 0.3 and 1.0, respectively. All the catalysts provide complete oil conversion to give C5+ hydrocarbons with a yield of 81.7–87.3 wt %. Pt/A catalyzes mainly decarboxylation and hydrogenation–dehydration reactions, while Pt/Z and Pt/ZA provide decarboxylation. The yield of diesel fraction reaches 71.8–73.9 wt % with an n-alkane content of 94.0–95.9 wt %. One-stage oil hydrocracking with the prevalence of hydrodecarbonylation and hydrogenation–dehydration reactions occurs on Pt/BA and Pt/BZ catalysts for 20 h to give the yield of the diesel fraction of at least 81.4 and 74.4 wt % and the total content of iso-alkanes and cycloalkanes of at least 28.3 and 60.7 wt %, respectively.  相似文献   

16.
The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas (SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures (600–1200 °C). CO methanation reaction was carried out in the temperature range of 300–600 °C at different weight hourly space velocities (WHSV = 30000 and 120000 mL·g?1·h?1) and pressures (0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 °C (Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures (600, 800 and 1000 °C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.  相似文献   

17.
A series of molybdenum-modified Ni/Al2O3 catalysts were prepared, and their catalytic activities and stabilities for thioetherification of mercaptans and di-olefins in fluid catalytic cracking (FCC) naphtha were investigated. The sulfided catalyst samples were characterized by a range of physical techniques. The results showed that the addition of Mo to Ni catalysts could improve the degree of dispersion of Ni species in the carrier, inhibit the formation of NiAl2O4 crystallites, enhance the presulfidation degree of the metals, and change the chemical environment and electronic structure of Ni. These effects could significantly improve the activity of the Ni/Al2O3 catalysts for thioetherification in FCC naphtha. Furthermore, addition of a small amount of Mo improved the di-olefin selective hydrogenation ability of the Ni/Al2O3 catalyst and significantly reduced coke formation during the reaction.  相似文献   

18.
Elucidation of the hydrodesulfurization (HDS) mechanism on molybdenum‐based catalysts using radioisotope tracer methods and reaction kinetics is reviewed. Firstly, to investigate the sulfidation state in Mo/Al2O3 and Co–Mo/Al2O3 catalysts, presulfiding of these catalysts has been performed using a 35S pulse tracer method. Secondly, HDS of radioactive 35S‐labeled dibenzothiophene was carried out over a series of sulfided molybdena–alumina catalysts and cobalt‐promoted molybdena–alumina catalysts in a pressurized flow reactor to estimate the behavior of sulfur on the working catalysts. Finally, sulfur exchange of a 35S‐labeled catalyst with hydrogen sulfide was performed to estimate the relationship between the amount of labile sulfur and catalytically active sites.  相似文献   

19.
The promotional effect of Fe-Mo species introduced into HZSM-5 (Zeolyst Int., SiO2/Al2O3 ≈ 30) zeolite catalyst by the wetness impregnation method for the 1-hexene aromatization was investigated. The structure and catalytic performance for the aromatization of 1-hexene over xFeyMo-ZSM-5 catalysts in comparison with unmodified HZSM-5 catalysts were studied. The xFeyMo-ZSM-5 catalysts contain fixed loading (5 wt%) and variable Fe/Mo ratio. The catalysts were characterized by BET, ICP-AES, HRSEM-EDS, HRTEM, XRD, FTIR, H2-TPR, NH3-TPD, and pyridine DRIFT spectroscopy. The characterization data confirmed the existence of Fe and Mo species in the zeolite matrix. With Fe and Mo species implementation to HZSM-5 zeolite, the amount of the acid sites decreased, but the selectivities to C9+ aromatics increased. The catalyst evaluation was performed at 350 °C for 6 h on-stream at atmospheric pressure using a fixed-bed quartz tube reactor. The selectivity to products of different carbon number was affected by the Fe/Mo ratio within the zeolite. It was found the product distribution of grouped fractions of C1–C17+ from the liquid product. The results indicate that the optimum ratio of Fe/Mo is 1–1.5. The highest selectivity for gasoline and distillate ranges was obtained for the 2.5wt%Fe2.5wt%Mo- and 3wt%Fe2wt%Mo-ZSM-5 samples, which was higher than that for parent HZSM-5 catalyst.  相似文献   

20.
The catalytic dehydrocondensation of methane to aromatics such as benzene and naphthalene was studied on the Mo carbide catalysts supported on micro- and mesoporous materials such as HZSM-5 (0.6 nm) and FSM-16 (2.7 nm). The Mo catalysts supported on H-ZSM-5 having appropriate micropores (0.6 nm size) and Si/Al ratios (20-70) exhibit higher yields (90-150 nmol/g-cat/s) and selectivities (higher than 74% on the carbon basis) in methane conversion to aromatic products such as benzene and naphthalene at 973 K and 1 atm, although they are drastically deactivated because of substantial coke formation. It was demonstrated that the CO/CO2 addition to methane effectively improves the catalyst performance by keeping a higher methane conversion and selectivities of benzene formation in the prolonged time-on-stream. The oxygen derived from CO and CO2 dissociation suppresses polycondensation of aromatic products and coke formation in the course of methane conversion. XAFS and TG/DTA/mass-spectrometric studies reveal that the zeolite-supported Mo oxide is endothermally converted under the action of methane around 955 K to nanosized particles of molybdenum carbide (Mo2C) (Mo-C, coordination number = 1,R- 2.09 å; Mo-Mo, coordination number = 2.3–3.5;R = 2.98 å). The SEM pictures showed that the nanostructured Mo carbide particles are highly dispersed on and inside the HZSM-5 crystals. On the other hand, it was demonstrated by IR measurements of pyridine adsorption that the Mo/HZSM-5 catalysts having the optimum SiO2/Al2O3 ratios around 40 show the maximum Brönsted acidity among the catalysts with the SiO2/Al2O3 ratios of 20–1900. There is a close correlation between the activity of benzene formation in the methane aromatization and the Brönsted acidity of HZSM-5 due to the bifunctional catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号