首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A spectrum of oxidative lesions was observed in a bacteriophage-based model system that is very sensitive to the photodynamic activity of selected dyes. When suspensions of the intact bacteriophage Qβ were exposed to methylene blue plus light (MB+L), inactivating events, or "hits" occurred that were oxygen-dependent and that were associated with the formation of several specific lesions: (1) carbonyl moieties on proteins, (2) 8-oxo-7,8-dihydroguanine (8-oxoGua), and (3) single-strand breaks (ssb) in the RNA genome and (4) RNA-protein crosslinks. Formation of carbonyl groups associated with protein in the Qβ phage preparation correlated positively with photoinactivation of the phage with increasing doses of either of the sensitizers MB or rose bengal. Strand breaks in the Qβ genomic RNA were observable at high MB concentrations but appeared not to be significant at the lower concentrations of MB, as full-length Qβ RNA was observable well beyond the 99% inactivation point in MB dosage. It was shown that the number of 8-oxoGua lesions were unlikely to be sufficient to account for the number of lethal events. Following exposure to MB+L, crosslink formation between Qβ RNA and protein was observed by virtue of the location of RNA at the interface of phenol-aqueous extractions of phage suspensions. A significant increase over background of RNA-protein complexes (including full-length Qβ RNA) was observed at the lowest concentration of MB tested (0.5 μ M ), which corresponded roughly to an average of 2 lethal hits per phage or approximately 13% survival compared to the zero MB control (100% survival). Due to its close correlation with Qβ inactivation and its expected lethality, RNA-protein crosslink formation may be important as an inactivating lesion in bacteriophage Qβ following MB+L exposure.  相似文献   

2.
PHOTOINACTIVATION OF INFLUENZA VIRUS FUSION AND INFECTIVITY BY ROSE BENGAL   总被引:1,自引:0,他引:1  
Rose bengal inactivated influenza virus upon exposure to light. Infectivity and fusion were inactivated with the same dose dependence, supporting the suggestion that the virucidal activity of photodynamic agents against enveloped viruses may be generally due to inactivation of their fusion protein(s). Concentrations required for inac-ti vation were found to depend upon the ratio of rose bengal to virus, rather than on the nominal aqueous concentration. Fusion-competent virosomes were inactivated similarly to intact virus particles. The HAZ portion of the influenza fusion protein HA underwent two different, apparently mutually exclusive modifications upon illumination with rose bengal: cross-linking, and conversion to a form that moved slightly more slowly on sodium dodecyl sulfate poly-acrylamide gel electrophoresis. Inactivation of viral fusion was inhibited by oxygen removal or addition of azide or β-carotene, and was enhanced by D2O, consistent with partial involvement of singlet oxygen. The possibility of a second mechanism of viral photoinactivation, by direct interaction between the viral fusion protein and the pho-toactivated dye, is also discussed.  相似文献   

3.
Abstract— This study investigates the importance of DNA damage in viral inactivation by phenothiazines and light. Phenothiazines, including methylene blue (MB), toluidine blue and azure B are of particular interest because of their ability to bind to nucleic acids in vitro. Initial studies employing phages T7, MS2 and PM2 indicated that both DNA and RNA phages as well as enveloped and nonenveloped phages can be inactivated by phenothiazine photosensiti-zation. PM2, which contains a lipid-protein bilayer and supercoiled DNA, was used for the mechanistic studies to model blood-borne viruses. Viral DNA damage was assessed following treatment of phage to known levels of viral inactivation by extracting the DNA and analyzing for both direct and piperidine-catalyzed strand cleavage by gel electrophoresis. DNA strand cleavage was found to be both sensitizer concentration and light dose dependent. Both viral inactivation and DNA damage were found to be oxygen-dependent events. In parallel experiments, strand cleavage of isolated PM2 DNA treated with MB and light was also found to be oxygen dependent, in contrast to some previous reports. Transfection studies, which measure the infectivity of the extracted viral DNA, indicated that DNA from MB-treated phage was just as capable of generating progeny virus as the untreated controls. It was therefore concluded that the observed DNA damage is not correlated with loss of phage infectivity.  相似文献   

4.
The mechanism of bacteriophage photoinactivation by methylene blue and light (MB+L) involves genomic RNA damage. In this study, two RNA viruses, Sindbis virus (SINV) and hepatitis C virus were treated by MB+L and their nucleic acids were amplified to show that RNA lesions occurred during inactivation. During MB+L inactivation, the viral load of both viruses was significantly reduced as MB+L exposure increased. The nucleic acid amplification of treated viral RNA was inhibited in a time-dependent manner and the percentage inhibition of amplification reached about 99% after 30 min of treatment. Furthermore, as compared to SINV viral infectivity detected by quantification of the 50% tissue culture infective dose (TCID(50)), the inhibition of SINV RNA amplification strongly correlated with a decrease in in vitro infectivity (R(2) > 0.94), suggesting that RNA serves as the main target during MB+L inactivation.  相似文献   

5.
Abstract. Proflavine-mediated photoinactivation of φ times 174 phage and its isolated DNA was studied under identical irradiation conditions. The inactivations followed single-hit kinetics and a linear relationship was obtained in reciprocal plots of the inactivation rates vs the proflavine concentrations for both phage and isolated DNA. The phage photoinactivation rate was increased with an increase in the amount of proflavine bound to the phage DNA in a strong binding range (0.01-0.04 proflavine/ nucleotide) as the total proflavine concentration was increased or the ionic strength decreased. Further, a phage-specific factor was also found to affect the inactivation rate. The photodynamic treatment induced mutations in three phage strains from "amber" to "wild type" at a mutation rate per lethal hit of 0.3 times 10-5 to 2.6 times 10-5. In contrast to phage infectivity, the φ times 174 DNA infectivity was measurable only at a high multiplicity of infection, and its photoinactivation occurred only at high proflavine concentrations. The photoinactivation rate was enhanced either with a decrease in the multiplicity of infection or with the use of spheroplasts of recA mutants strains. The results are discussed in terms of the nature of and possible repair mechanisms of photodynamically induced lesions in φ times 174 phage DNA.  相似文献   

6.
Abstract— Although numerous photosensitizers have been used experimentally to decontaminate viruses in cellular blood components, little is known about their mechanisms of photoinactivation. Using M13 bacteriophage and vesicular stomatitis virus (VSV) as model viruses, we have investigated alteration of the viral genome, protein and envelope after phototreatment. Methylene blue (MB) and aluminum phthalocyanine tetrasulfonate (AlPcS4) phototreatment inactivated bacteriophage M13 and decreased the fraction of single-stranded circular genomic DNA (sc-DNA) by converting it to linear form. This conversion was enhanced by treating the extracted DNA with piperidine at 55°C. Piperidine-labile breaks were well correlated to phage survival (5.1% sc-DNA at 1.7% phage survival for MB) under conditions where only minor differences were seen in the relative abundance of M13 coat protein on sodium dodecyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE). Neither aluminum phthalocyanine (AlPc) nor merocyanine 540 (MC540) inactivated M13 nor were there significant changes observed in DNA and coat protein. Methylene blue, AlPcS4 and AlPc inactivated VSV and inhibited fusion of the virus envelope to Vero cells at pH 5.7 (i.e. with plasma membrane). However, the degree of this inhibition was small compared to the extent of virus inactivation (43% inhibition vs 4.7 log10 or 99.998% inactivation, for MB). In contrast, an antibody to VSV G-spike protein inhibited fusion at pH 5.7 by 52% with a concomitant decline in VSV infectivity of 0.15 log10 (30%). Few changes were observed in the relative abundance of G protein for MB and AlPcS4 phototreated samples and no additional protein bands were observed on SDS-PAGE. Phototreatment did not appreciably change the relative fusion ability at pH 7.2 (via the endocytotic pathway). These results collectively suggest that nucleic acid may be an important target for photoinactivation of these model viruses by MB and AlPcS4.  相似文献   

7.
Abstract. Thiols and disulfides protect both φX174 phage and its isolated DNA from the lethal action of proflavine plus light. The protective ability of these compounds appears to be attributed to the -SH or the -S-S- group and the property to interact with the proflavine-phage DNA complex. The phage inactivation efficiency per proflavine bound to DNA is reduced by 50 to 30% upon addition of cysteine or cystamine. Substances that affect the lifetime of singlet oxygen modify the rate of phage photoinactivation in the presence of proflavine; the inactivation rate is decreased by N-3 and increased by D2O. Irradiation under N2 atmosphere markedly decreases the phage photosensitization by proflavine. Irradiation with monochromatic light of 440 nm is less efficient than irradiation with light of 440 nm plus 360 nm, and the difference is more pronounced in N2 than in air. These results are discussed in relation to various possible photochemical pathways.  相似文献   

8.
We have investigated the mechanism of virus photoinactivation with methylene blue (MB) by conducting deuterium oxide (D2O), azide ion (N3-) and oxygen-dependent, studies. Inactivation of M13 bacteriophage and singlet oxygen (1O2) generation by MB photosensitization were irradiation dose dependent. Inactivation of M13 was enhanced by D2O and inhibited by N3-, suggesting that 1O2 participates in M13 inactivation by MB photosensitization. However, N3- did not inhibit M13 inactivation completely. On the other hand, deoxygenating the reaction solution still caused 52-67% of M13 inactivation observed in the presence of oxygen. These results suggest that 102-mediated (Type II) and sensitizer-mediated (Type I) reactions may both play roles in M13 inactivation by MB photosensitization.  相似文献   

9.
Methylene blue (MB) is being used as a sensitizer for the photodynamic inactivation of viral contaminants, including the human immunodeficiency virus, in blood and blood components used in medical treatment. We recently showed that oxygen-dependent photodynamic inactivation of the RNA bacteriophage Q beta with MB plus light (MB + L) is associated with the formation of 8-oxo-7,8-dihydroguanine, protein carbonyls, RNA-protein crosslinkages and minor amounts of RNA strand breaks. We report herein, with the use of infectious RNA assays, that the lethal lesions in Q beta phage following MB + L exposure can be accounted for, and thereby most likely reside in, the RNA component of the phage but that the protein component of the virion contributes to the inactivation. The formation of RNA-protein crosslinkages as the primary inactivating type of lesion is put forth as the most probable model of the inactivation mechanism due to the sensitivity with which RNA-protein crosslinks are formed in response to MB + L exposure and the expectation of the powerful inactivating power of this type of lesion.  相似文献   

10.
Factors Affecting Virus Photoinactivation by a Series of Phenothiazine Dyes   总被引:6,自引:0,他引:6  
A series of four phenothiazine dyes, including methylene blue (MB), were previously tested for their ability to photoinactivate viruses in red cell suspensions. One of the dyes, 1,9-dimethyl-3-dimethylamino-7-dimethylaminophenothiazine (1,9-dimethylmethylene blue), exhibited good intracellular and extracellular virucidal activity for several RNA and DNA viruses under conditions that minimally affected red cell properties. In order to understand why the virucidal specificity of 1, 9-dhnethylmethylene blue was greater than other phenothiazines tested, the physical and chemical properties of the dye were compared to three other closely related analogues (MB, 1,9-dimethyl-3-diethylamino-7-dlbutylaminophenothiazine [compound 4-140], 1,9-dimethyl-3-dimethylamino-7-diethylaminophenothiazine [compound 6-136]). All compounds required light and oxygen for virucidal activity and had relatively high singlet oxygen yields (>0.5), but 1,9-dimethylmethylene blue had a singlet oxygen yield approximately 50% greater than that of MB. In addition, the hydrophobicity/hydophilicity of the compounds varied, with the partition coefficients (2-octanol : water) ranging from 0.11 for MB to 3560 for compound 4-140. The dyes had the following affinities for DNA: 1,9-dimethylmethylene blue > compound 6-136 > MB ~ compound 4-140. This order was similar to the order of activities for photoinactivation of the nonenveloped bacteriophage, R17, by the four compounds. Results with the most hydrophobic compound, 4-140, contrasted with those obtained with 1,9-dimethylmethylene blue. Compound 4-140 had a high affinity for protein and a low affinity for DNA. Although compound 4-140 and light inactivated the nonenveloped bacteriophage R17 poorly, the dye readily photoinactivated enveloped viruses in buffer. However, unlike results with 1,9-dimethylmethylene blue, viral inactivation of enveloped viruses by compound 4-140 was completely inhibited by the presence of red cells and plasma. Thus, the high affinity of 1,9-di-methyymethylene blue for DNA and the dye's efficient singlet oxygen yield suggest viral nucleic acid as a potential target, which could explain the photosensitizer's ability to inactivate viruses without adversely affecting anuclete red cells.  相似文献   

11.
Exposure to visible-light causes the photoinactivation of certain bacteria by a process that is believed to involve the photo-stimulation of endogenous intracellular porphyrins. Studies with some bacterial species have reported that this process is oxygen-dependent. This study examines the role of oxygen in the visible-light inactivation of Staphylococcus aureus. Suspensions of S. aureus were exposed to broadband visible-light under both oxygen depletion and oxygen enhancement conditions to determine whether these environmental modifications had any effect on the staphylococcal inactivation rate. Oxygen enhancement was achieved by flowing oxygen over the surface of the bacterial sample during light inactivation and results demonstrated an increased rate of staphylococcal inactivation, with approximately 3.5 times less specific dose being required for inactivation compared to that for a non-enhanced control. Oxygen depletion, achieved through the addition of oxygen scavengers to the S. aureus suspension, further demonstrated the essential role of oxygen in the light inactivation process, with significantly reduced staphylococcal inactivation being observed in the presence of oxygen scavengers. The results of the present study demonstrate that the presence of oxygen is important for the visible-light inactivation of S. aureus, thus providing supporting evidence that the nature of the mechanism occurring within the visible-light-exposed staphylococci is photodynamic inactivation through the photo-excitation of intracellular porphyrins.  相似文献   

12.
The risk of transmitting infections by blood transfusion has been substantially reduced. However, alternative methods for inactivation of pathogens in blood and its components are needed. Application of photoactivated cationic porphyrins can offer an approach to remove non-enveloped viruses from aqueous media. Here we tested the virus inactivation capability of meso-Tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) and meso-Tri-(4-N-methylpyridyl)monophenylporphyrin (TMPyMPP) in the dark and upon irradiation. T7 bacteriophage, as a surrogate on non-enveloped viruses was selected as a test system. TMPyP and TMPyMPP reduce the viability of T7 phage already in the dark, which can be explained by their selective binding to nucleic acid. Both compounds proved to be efficient photosensitizers of virus inactivation. The binding of porphyrin to phage DNA was not a prerequisite of phage photosensitization, moreover, photoinactivation was more efficiently induced by free than by DNA bound porphyrin. As optical melting studies and agarose gel electrophoresis of T7 nucleoprotein revealed, photoreactions of TMPyP and TMPyMPP affect the structural integrity of DNA and also of viral proteins, despite their selective DNA binding.  相似文献   

13.
Possible association of photodynamic sensitization by cytochrome b6/f complex (cyt b6/f) via singlet oxygen (1O2) mechanism with photoinhibition damage to photosystem II (PS II) was studied using such subthylakoid preparations as photosystem I (PS I) particles, PS II core complex and cyt b6/f from spinach leaves. Upon exposure to bright light, PS II core complex lost photosynthetic electron transport activity to a certain extent, whose-spectral dependence implied that pheophytin a is likely involved in photoinactivation of PS II core complex in itself. The presence of PS I particles exerted virtually no effect on PS II core photoinactivation. However, the inclusion of cyt b6/f in samples resulted in a marked exacerbation of the photoinactivation, particularly in UV-A and blue light. Such effect of cyt b6/f was suppressed by azide and enhanced by the medium deuteration. Photogeneration of 1O2 from cyt b6/f was confirmed by ESR and spectrophotometry, chemically trapping 1O2. Action spectra for both 1O2 photoproduction and PS II core photoinactivation by cyt b6/f bore a close resemblance to each other, seemingly carrying the absorption characteristics of the Rieske Fe-S protein. A complex deficient in the Rieske protein prepared from intact cyt b6/f showed virtually no generation of 1O2 in light, whereas an efficient photoformation of 1O2 was seen in the Rieske protein preparation. The results suggest that cyt b6/f, rather specifically the Rieske center, may play a prominent role in photoinhibition processes through type II photosensitization in thylakoids.  相似文献   

14.
The action spectrum (240-300 nm) for photoinactivation of unsensitized phage T7 and the action spectra (310-380 nm) for photoinactivation of phage T7 sensitized with 8-methoxypsoralen (8-MOP) and angelicin were measured by an automated method. For unsensitized phage T7 the action spectrum is in good agreement with the absorption spectrum. For sensitization with angelicin the action spectrum is similar to the absorption spectrum, but for sensitization with 8-MOP the spectra are different. The agreement between the T7 absorption and action spectra in the far-UV region is due to photodamage of DNA, leading to phage inactivation. The similarity in the action and absorption spectra in the near-UV region for sensitization with angelicin seems to be in accordance with the monofunctional photobinding of angelicin to DNA. The action spectrum for sensitization with 8-MOP has a maximum at about 320 nm and this suggests that, in addition to the monoadducts, the biadducts play a role in the inactivation of phage T7. Taking the number of bound furocoumarin molecules into consideration, the quantum efficiencies were estimated. Furocoumarin increases the quantum efficiency in the near-UV region and the values are similar to those obtained in far-UV light without psoralens.  相似文献   

15.
HEMATOPORPHYRIN PHOTOSENSITIZATION OF SERUM ALBUMIN and SUBTILISIN BPN'   总被引:1,自引:0,他引:1  
—The photosensitized inactivation of subtilisin BPN' by free hematoporphyrin (HP) followed exponential kinetics with positive mechanistic tests for the involvement of singlet oxygen (1O2) as the principal intermediate. The photoinactivation quantum yield was 0.029 at 390 nm in oxygen-saturated, D2O buffer at pH 7.0. The effects of HP binding were investigated for tryptophan oxidation in bovine serum albumin (BSA) and human serum albumin (HSA) at high protein:HP concentration ratios where the HP was > 97% complexed. The reaction kinetics were non-exponential and mimick a second-order process in the initial stages. The rate of HP photobleaching was 30-fold faster for complexed HP compared with free HP, which was shown to account for the observed kinetics. Mechanistic tests showed that 1O2 was the dominant photooxidizing intermediate of tryptophan residues and that it was not involved in the accompanying photobleaching of HP. The quantum yield for tryptophan oxidation in BSA was 0.11 at 390 nm in oxygen-saturated, D2O buffer at pH 8.0. The reactivity of HSA was approximately 2-fold lower than BSA for equivalent conditions. Estimates of the reaction cross sections led to 3 Å2 for the inactivation of subtilisin BPN' by 1O2 and 20 Å2 for the oxidation of tryptophan in BSA.  相似文献   

16.
Low voltage, low energy submerged pulsed arcs between a pair of carbon or iron electrodes with a pulse repetition rate of 100?Hz, energies of 2.6?C192?mJ and durations of 20, 50 and 100???s were used to remove methylene blue (MB) contamination from 30?ml aqueous solutions. The MB concentration decreased exponentially with rates of 0.0006?C0.0143?s?1 during processing with the carbon electrode pair. With the iron electrodes, the MB concentration initially decreased faster (0.030?s?1) than with the carbon electrodes, but later saturated. However when microparticles produced with the iron electrodes were periodically filtered, the high removal rate was maintained. Under these conditions, the volume of water which can be treated per unit energy expenditure was much higher with the submerged arc than with other plasma processes. A kinetic model based on MB degradation by OH· radicals formed by the discharge was formulated. The higher initial MB removal rate with iron electrodes is explained by additional OH· production from Fenton??s reaction between Fe++ and H2O2 produced by the discharge. This rate is maintained if the eroded iron particles are filtered, but if eroded iron particles accumulate, degradation slows down and stops, possibly because the iron particles catalytically decompose H2O2 and hence stops Fenton??s reaction, and either directly or via increased Fe++ dissolved from the particles, scavenge the OH· radicals.  相似文献   

17.
SENSITIZED PHOTOINACTIVATION OF BACTERIOPHAGE T4   总被引:5,自引:0,他引:5  
Abstract— The photoinactivation of an osmotic shock resistant mutant of the bacteriophage T 4 can be sensitized by two cationic derivatives of acetophenone. At least part of the sensitized inactivation appears to be due to the formation of thymine dimers in phage DNA by a mechanism which involves triplet excitation transfer from the sensitizer to thymine in the DNA. The photoreactivable sector of the phage inactivated by sensitized irradiation is about 0.6, almost twice as large as the sector for u.v. irradiated phage.  相似文献   

18.
The decomposition of methylene blue (MB) in aqueous solution was investigated using a pulsed corona discharge. The discharge was ignited in the gas bubbled in the solution through several needle electrodes. The influence of treatment time, volume of the treated solution and initial concentration of the dye in solution on MB degradation was studied. The effect of the nature of the gas introduced was also investigated. For the same energy input, MB conversion increased in the order air < argon < oxygen. When using oxygen, the decomposition of MB exceeded 95% after ~20 min plasma treatment. Higher efficiency was obtained for higher treated volume and higher initial concentration. At 90% conversion the yield obtained with oxygen was ~5 g/kWh for an initial concentration of 150 mg/l and a treated volume of solution of 100 ml.  相似文献   

19.
Photodynamic therapy (PDT) for localized microbial infections exerts its therapeutic effect both by direct bacterial killing and also by the bactericidal effects of host neutrophils stimulated by PDT. Therefore, PDT-induced damage to neutrophils must be minimized, while direct photoinactivation of bacteria is maintained to maximize the therapeutic efficacy of antimicrobial PDT in vivo. However, there has been no study in which the cytocidal effect of PDT on neutrophils was investigated. In this study, the cytocidal effects of PDT on neutrophils were evaluated using different antimicrobial photosensitizers to find suitable candidate photosensitizers for antimicrobial PDT. PDT on murine peripheral-blood neutrophils was performed in vitro using each photosensitizer at a concentration that exerted a maximum bactericidal effect on methicillin-resistant Staphylococcus aureus, and morphological alteration and viability of neutrophils were studied. Most neutrophils were viable (>80%) after PDT using toluidine blue-O (TB) or methylene blue (MB), while neutrophils showed morphological change and their viabilities were decreased (<70%) after PDT using other photosensitizers (erythrosine B, rose bengal, crystal violet, Photofrin, new methylene blue and Laserphyrin). These results suggest that PDT using TB or MB can preserve host neutrophils while exerting a significant therapeutic effect on in vivo localized microbial infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号