首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous paper, we studied the ergodic properties of an Euler scheme of a stochastic differential equation with a Gaussian additive noise in order to approximate the stationary regime of such an equation. We now consider the case of multiplicative noise when the Gaussian process is a fractional Brownian motion with Hurst parameter H>1/2H>1/2 and obtain some (functional) convergence properties of some empirical measures of the Euler scheme to the stationary solutions of such SDEs.  相似文献   

2.
Martingale and stationary solutions for stochastic Navier-Stokes equations   总被引:2,自引:1,他引:1  
Summary We prove the existence of martingale solutions and of stationary solutions of stochastic Navier-Stokes equations under very general hypotheses on the diffusion term. The stationary martingale solutions yield the existence of invariant measures, when the transition semigroup is well defined. The results are obtained by a new method of compactness.  相似文献   

3.
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left limits obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.  相似文献   

4.
For a mixed stochastic differential equation driven by independent fractional Brownian motions and Wiener processes, the existence and integrability of the Malliavin derivative of the solution are established. It is also proved that the solution possesses exponential moments.  相似文献   

5.
Summary We prove existence and uniqueness of the solution of a parabolic SPDE in one space dimension driven by space-time white noise, in the case of a measurable drift and a constant diffusion coefficient, as well as a comparison theorem.and INRIAPartially supported by DRET under contract 901636/A000/DRET/DS/SR  相似文献   

6.
Motivated by the idea of imposing paralleling computing on solving stochastic differential equations (SDEs), we introduce a new domain decomposition scheme to solve forward–backward stochastic differential equations (FBSDEs) parallel. We reconstruct the four step scheme in Ma et al. (1994) [1] and then associate it with the idea of domain decomposition methods. We also introduce a new technique to prove the convergence of domain decomposition methods for systems of quasilinear parabolic equations and use it to prove the convergence of our scheme for the FBSDEs.  相似文献   

7.
In this paper, we consider a class of neutral stochastic partial differential equations with delays and Poisson jumps. Sufficient conditions for the existence and exponential stability in mean square as well as almost surely exponential stability of mild solutions are derived by means of the Banach fixed point principle. An example is provided to illustrate the effectiveness of the proposed result.  相似文献   

8.
The aim of this paper is to give a wide introduction to approximation concepts in the theory of stochastic differential equations. The paper is principally concerned with Zong-Zakai approximations. Our aim is to fill a gap in the literature caused by the complete lack of monographs on such approximation methods for stochastic differential equations; this will be the objective of the author's forthcoming book. First, we briefly review the currently-known approximation results for finite- and infinite-dimensional equations. Then the author's results are preceded by the introduction of two new forms of correction terms in infinite dimensions appearing in the Wong-Zakai approximations. Finally, these results are divided into four parts: for stochastic delay equations, for semilinear and nonlinear stochastic equations in abstract spaces, and for the Navier-Stokes equations. We emphasize in this paper results rather than proofs. Some applications are indicated.The author's research was partially supported by KBN grant No. 2 P301 052 03.  相似文献   

9.
In [R. Buckdahn, B. Djehiche, J. Li, S. Peng, Mean-field backward stochastic differential equations. A limit approach. Ann. Probab. (2007) (in press). Available online: http://www.imstat.org/aop/future_papers.htm] the authors obtained mean-field Backward Stochastic Differential Equations (BSDE) associated with a mean-field Stochastic Differential Equation (SDE) in a natural way as a limit of a high dimensional system of forward and backward SDEs, corresponding to a large number of “particles” (or “agents”). The objective of the present paper is to deepen the investigation of such mean-field BSDEs by studying them in a more general framework, with general coefficient, and to discuss comparison results for them. In a second step we are interested in Partial Differential Equations (PDE) whose solutions can be stochastically interpreted in terms of mean-field BSDEs. For this we study a mean-field BSDE in a Markovian framework, associated with a McKean–Vlasov forward equation. By combining classical BSDE methods, in particular that of “backward semigroups” introduced by Peng [S. Peng, J. Yan, S. Peng, S. Fang, L. Wu (Eds.), in: BSDE and Stochastic Optimizations; Topics in Stochastic Analysis, Science Press, Beijing (1997) (Chapter 2) (in Chinese)], with specific arguments for mean-field BSDEs, we prove that this mean-field BSDE gives the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated with mean-field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.  相似文献   

10.
In this paper, we study the existence of mild solutions for initial value problems for semilinear Volterra integrodifferential equations in a Banach space. The arguments are based on the concept of measure of noncompactness in Fréchet space and the Tikhonov fixed point theorem.  相似文献   

11.
In this paper, we prove the existence and uniqueness of the solution for a class of backward stochastic partial differential equations (BSPDEs, for short) driven by the Teugels martingales associated with a Lévy process satisfying some moment conditions and by an independent Brownian motion. An example is given to illustrate the theory.  相似文献   

12.
In this paper we generalize the comparison result of Bostan and Namah (2007) [8] to the second-order parabolic case and prove two properties of pseudo-almost periodic functions; then by using Perron’s method we prove the existence and uniqueness of time pseudo-almost periodic viscosity solutions of second-order parabolic equations under usual hypotheses.  相似文献   

13.
In this paper we discuss existence and uniqueness results for BSDEs driven by centered Gaussian processes. Compared to the existing literature on Gaussian BSDEs, which mainly treats fractional Brownian motion with Hurst parameter H>1/2H>1/2, our main contributions are: (i) Our results cover a wide class of Gaussian processes as driving processes including fractional Brownian motion with arbitrary Hurst parameter H∈(0,1)H(0,1); (ii) the assumptions on the generator ff are mild and include e.g. the case when ff has (super-)quadratic growth in zz; (iii) the proofs are based on transferring the problem to an auxiliary BSDE driven by a Brownian motion.  相似文献   

14.
In this paper, a stochastic mean square version of Lax’s equivalence theorem for Hilbert space valued stochastic differential equations with additive and multiplicative noise is proved. Definitions for consistency, stability, and convergence in mean square of an approximation of a stochastic differential equation are given and it is shown that these notions imply similar results as those known for approximations of deterministic partial differential equations. Examples show that the assumptions made are met by standard approximations.  相似文献   

15.
We prove a limit theorem for non-degenerate quasi-linear parabolic SPDEs driven by space-time white noise in one space-dimension, when the diffusion coefficient is Lipschitz continuous and the nonlinear drift term is only measurable. Hence we obtain an existence and uniqueness and a comparison theorem, which generalize those in [2], [4], [5] to the case of non-degenerate SPDEs with measurable drift and Lipschitz continuous diffusion coefficients.Research supported by the Hungarian National Foundation of Scientific Research No. 2290.  相似文献   

16.
In this paper we discuss split-step forward methods for solving Itô stochastic differential equations (SDEs). Eight fully explicit methods, the drifting split-step Euler (DRSSE) method, the diffused split-step Euler (DISSE) method and the three-stage Milstein (TSM 1a-TSM 1f) methods, are constructed based on Euler-Maruyama method and Milstein method, respectively, in this paper. Their order of strong convergence is proved. The analysis of stability shows that the mean-square stability properties of the methods derived in this paper are improved on the original methods. The numerical results show the effectiveness of these methods in the pathwise approximation of Itô SDEs.  相似文献   

17.
This paper concerns a priori estimates and existence of solutions of generalized mean curvature equations with Dirichlet boundary value conditions in smooth domains. Using the blow-up method with the Liouville-type theorem of the p laplacian equation, we obtain a priori bounds and the estimates of interior gradient for all solutions. The existence of positive solutions is derived by the topological method. We also consider the non-existence of solutions by Pohozaev identities.  相似文献   

18.
This paper studies, under some natural monotonicity conditions, the theory (existence and uniqueness, a priori estimate, continuous dependence on a parameter) of forward–backward stochastic differential equations and their connection with quasilinear parabolic partial differential equations. We use a purely probabilistic approach, and allow the forward equation to be degenerate. Received: 12 May 1997 / Revised version: 10 January 1999  相似文献   

19.
Summary We introduce a new class of backward stochastic differential equations, which allows us to produce a probabilistic representation of certain quasilinear stochastic partial differential equations, thus extending the Feynman-Kac formula for linear SPDE's.The research of this author was partially supported by DRET under contract 901636/A000/DRET/DS/SRThe research of this author was supported by a grant from the French Ministère de la Recherche et de la Technologie, which is gratefully acknowledged  相似文献   

20.
Variable coefficient and Wick-type stochastic nonlinear Schrödinger (NLS) equations are investigated. By using white noise analysis, Hermite transform and extended F-expansion method, we obtain a number of Wick versions of periodic-like wave solutions and periodic wave solutions expressed by various Jacobi elliptic functions for Wick-type stochastic and variable coefficient NLS equations, respectively. In the limit cases, the soliton-like wave solutions are showed as well. Since Wick versions of functions are usually difficult to evaluate, we get some nonWick versions of the solutions for Wick-type stochastic NLS equations in special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号