首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current-voltage characteristics of the polycrystalline substituted lanthanum manganite (La0.5Eu0.5)0.7Pb0.3MnO3 have been measured at temperatures close to the metal-insulator transition temperature and at low temperatures. In both cases, the current-voltage characteristics exhibit nonlinear properties that are strongly dependent on the strength of an applied magnetic field. The mechanisms responsible for the nonlinear properties at these temperatures are found to be different: near the metal-insulator transition, the current-voltage characteristics are determined by the phase layering inside granules, while at low temperatures, they are determined by tunneling of carriers through insulating interlayers of the granules.  相似文献   

2.
The magnetic and crystal structures of the Pr0.5Sr0.5CoO3 metallic ferromagnet have been studied by the neutron diffraction technique. It is demonstrated that below 150 K, the compound is mesoscopically separated into two crystalline phases with different spatial symmetries and with different directions of the magnetic anisotropy. The phase separation exists down to 1.5 K, and at temperatures below 90 K, the low-symmetry phase occupies about 80% of the sample volume. The main structural difference between the phases is the configuration of oxygen atoms around praseodymium and, to a certain extent, around cobalt. The ferromagnetic structure with the magnetic moment lying in the basal plane of the structure (μCo ≈ 1.7 μ B at 1.5 K) arises at 234 K, whereas the component directed along the long axis of the unit cell appears at 130 K. The formation of the new structural phase and change in the orientation of the magnetic moment give rise to the anomalies of the physical and magnetic characteristics of this compound observed earlier at temperatures about 120 K.  相似文献   

3.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

4.
The crystal structure and magnetic properties of the (La0.3Sr0.7)0.5Ca0.5FeO3 solid solution with a perovskite structure have been investigated. The solid solution has been synthesized according to the high-pressure technique. The unit cell parameters have been refined using the Rietveld full-profile analysis under the assumption of the single-phase crystalline state and the two-phase model corresponding to the parent compositions. It follows from the calculations that the best agreement between the experimental data and the theoretical curve is observed for the two-phase model. The measurement of the magnetic properties also indicates the coexistence of two magnetic phases.  相似文献   

5.
Results of neutron diffraction studies of R0.5Sr0.5MnO3 manganites (R = Sm, Nd0.772Tb0.228, and Nd0.544Tb0.456) performed to reveal the microscopic origins of the giant oxygen isotope effect recently discovered in Sm0.5Sr0.5MnO3 are presented. It is shown that two crystalline phases differing in the type of Jahn-Teller distortions of oxygen octahedra and in the type of magnetic ordering coexist at low temperatures in all the studied compositions. A scenario for the observed phase transitions is suggested based on the diffraction data. It is found that the percolation transition from the metallic to insulating state in compositions with Sm upon substitution of 18O for 16O is associated with a sharp (from 65 to 13%) decrease in the volume of the ferromagnetic metallic phase.  相似文献   

6.
The temperature and field dependences of the magnetization, the electrical resistivity, and the magnetostriction of bilayer lanthanum manganite La1.4Sr1.6Mn2O7 single crystals and cobalt-doped La1.4Sr1.6(Mn0.9Cu0.1)2O7 are measured. The magnetostriction of the cobalt-doped compound increases as compared to the initial La1.4Sr1.6Mn2O7 compound, and the magnetization and the magnetoresistance of the former compound change substantially. Powder and single-crystal neutron diffraction patterns are used to detect ferromagnetic ordering in La1.4Sr1.6(Mn0.9Co0.1)2O7 at a temperature below T C ~ 45(2) K, and this ordering coexists with antiferromagnetic correlations, which develop at temperatures below T C ~ 80(5) K.  相似文献   

7.
The temperature dependences of the velocity of longitudinal sound, internal friction, and magnetization of the single crystal with the nominal composition La0.6Pr0.1Ca0.3MnO3 have been measured. It has been found that the substitution of praseodymium for lanthanum in La0.7Ca0.3MnO3 leads to a decrease in the velocity of sound and to an increase in the spontaneous magnetization. The method of determining the Curie temperature distribution function during a first-order transition has been proposed. It has been shown that, in the crystal under study, this function is asymmetric.  相似文献   

8.
The anion deficient cobaltite La0.5Ba0.5CoO2.8 with theformal cobalt valence state close to 3+ has been studied as function of pressure up to6.5 GPa at different temperatures by neutron powder diffraction. At ambient pressure thecrystal structure of this compound has cubic symmetry (space group Pm3?m) and is found to become antiferromagnetic withT N close to 250 K. Applied pressure inducesa gradual transition from the antiferromagnetic into a ferromagnetic state through a mixedmagnetic state. The transition is not accompanied by obvious changes in the macroscopiccrystal symmetry. It is suggested that the magnetic ground state strongly depends on theunit cell volume and that the transition is associated with a spin state crossover of thecobalt ions whereas the formal Co3+/Co4+ ratio is less importantthan expected following the double exchange scenario for the appearance offerromagnetism.  相似文献   

9.
Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room temperature. Langevin’s theory incorporating the interparticle interaction was used to fit the virgin curve of particle magnetization. The low-temperature magnetization follows Bloch spin wave theory. Curie temperature derived from magnetic thermogravimetric analysis shows that Curie temperature increases with increasing particle size. Using these particles magnetic fluid is synthesized and magnetic characterization is reported. The monolayer coating of surfactant on particle surface is confirmed using thermogravimetric measurement. The same technique can be extended to study the magnetic phase transition. The Curie temperature derived using this measurement complies with the low-temperature magnetic measurement. The room-temperature and high-temperature magnetization measurements are also studied for magnetic fluid systems. The magnetic parameters derived for fluid are in good agreement with those obtained for the particle system.  相似文献   

10.
The acoustical, resistive, and magnetic properties of a La0.75Sr0.25MnO3 lanthanum manganite single crystal are investigated in the temperature range involving the second-order magnetic phase transition. The acoustical measurements are performed by the pulse-echo method in the frequency range 14–90 MHz. It is found that, as the temperature decreases, the velocity of a longitudinal acoustic wave propagating along the [111] axis in the single crystal drastically increases at temperatures below the critical point of the magnetic phase transition. No dispersion of the acoustic velocity is revealed. A sharp increase in the acoustic velocity is accompanied by the appearance of an acoustical absorption peak. The observed effects are discussed with due regard for the interaction of acoustic waves with the magnetic moments of the manganese ions.  相似文献   

11.
The results of investigations of the magnetization, susceptibility, and magnetic-field-induced changes in the entropy of polycrystalline manganite (La0.6Ca0.4)0.9Mn1.1O3 near the magnetic phase transition have been presented. Magnetic measurements have been carried out at temperatures in the range from 210 to 310 K in magnetic fields of up to 9 T. The magnetocaloric effect has been revealed by measuring the magnetic-field dependences of magnetization. The magnitude of the magnetocaloric effect is compared with similar results obtained for other manganites.  相似文献   

12.
Polyaniline/Zn0.5Cu0.5Fe2O4 nanocomposite was synthesized by a simple, general and inexpensive in-situ polymerization method in w/o microemulsion. The effects of polyaniline coating on the magnetic properties of Zn0.5Cu0.5Fe2O4 nanoparticles were investigated. The structural, morphological and magnetic properties of as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, scanning electron microscopy (SEM) and magnetic measurements. The morphology analysis confirmed that polyaniline was deposited on the porous surface of magnetic Zn0.5Cu0.5Fe2O4. It was shown that the saturation magnetization and coercivity of Zn0.5Cu0.5Fe2O4 decreased after polyaniline coating, which can be interpreted by the interparticle dipole–dipole interactions that contributed to magnetic anisotropy and changed the magnetic properties of the nanoparticles. PACS  74.25.Ha; 81.05.-t; 81.05.Lg  相似文献   

13.
The structure of domain walls and new-phase nucleation are investigated in a four-sublattice antiferromagnet (AFM) of the La2CuO4 type placed in a magnetic field which initiates an AFM-weak-ferromagnet (WFM) magnetic structural phase transition. The critical fields for nucleus growth are found in the case of two types of domain walls present. The magnetization curve is calculated and a two-step mechanism is proposed for the AFM-WFM phase transition observed in La2CuO4.  相似文献   

14.
The atomic and magnetic structures of La0.5Ca0.5CoO3 cobaltite have been studied by the neutron diffraction technique at high pressures of up to 4 GPa in the 10- to 300-K temperature range. The pressure dependences of the structural parameters have been obtained. The Curie temperature increases with the pressure with the coefficient dT C/dP = 1 K/GPa, demonstrating the stability of the ground ferromagnetic (FM) state. The pressure dependence of the ground FM state in La0.5Ca0.5CoO3 is in drastic contrast with that for La1 − x Ca x CoO3 at a lower calcium content (x < 0.3). For the latter compound, the pressure suppressed the ground FM state and a large negative pressure coefficient of the Curie temperature (dT C/dP ∼ −10 K/GPa) was observed. The nature of such a phenomenon is analyzed in the framework of the double exchange model also taking into account the changes in the electron configuration of Co3+ ions.  相似文献   

15.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

16.
The crystal and magnetic structures of the oxygen deficient manganites La0.7Sr0.3MnO3-d (d = 0.15, 0.20) have been studied by means of powder neutron diffraction over the 0–5.2 GPa pressure and 10–290 K temperature ranges. La0.7Sr0.3MnO2.85 exhibits a coexistence of rhombohedral and tetragonal (I4/mcm) crystal structures and below Tg ~ 50 K a spin glass state is formed. La0.7Sr0.3MnO2.80 exhibits a tetragonal (I4/mcm) crystal structure. Below Tg ~ 50 K a phase separated magnetic state is formed, involving coexistence of C-type AFM domains with spin glass domains. In both compounds the crystal structure and magnetic states remain stable upon compression. The factors leading to the formation of different magnetic states in La0.7Sr0.3MnO3-d (d = 0.15, 0.20) and their specific high pressure behavior, contrasting with that of the stoichiometric A0.5Ba0.5MnO3 (A = Nd, Sm) compounds showing pressure-induced suppression of the spin glass state and the appearance of the FM state, are analysed.  相似文献   

17.
High pressure evolution of structural, vibrational and magnetic properties of La0.75Ca0.25MnO3 was studied by means of X-ray diffraction and Raman spectroscopy up to 39 GPa, and neutron diffraction up to 7.5 GPa. The stability of different magnetic ground states, orbital configurations and structural modifications were investigated by LDA + U electronic structure calculations. A change of octahedral tilts corresponding to the transformation of orthorhombic crystal structure from the Pnma symmetry to the Immaone occurs above P ~ 6 GPa. At the same time, the evolution of the orthorhombic lattice distortion evidences an appearance of the e g d x² ? z² orbital polarization at high pressures. The magnetic order in La0.75Ca0.25MnO3 undergoes a continuous transition from the ferromagnetic 3D metallic (FM) ground state to the A-type antiferromagnetic (AFM) state of assumedly 2D pseudo-metallic character under pressure, that starts at about 1 GPa and extends possibly to 20–30 GPa.  相似文献   

18.
This paper addresses the synthesis structural and electrochemical properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. The charge–discharge reaction of Li/LiPF6-EC–DEC/LiFe0.5Mn0.5PO4 cell carried out at the 1-C rate shows a capacity retention of 128 mAh/g. The local structure of the delithiated Li x Fe0.5Mn0.5PO4 phases have been studied by Fourier transform infrared spectroscopy and magnetometry. Spectral features indicate that the structure of the delithiated phase remains in the orthorhombic system. The compositional dependence of the magnetic moment is found to be in quantitative agreement with the theoretical value predicted for oxidation of M 2+ ions in the high spin state. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007  相似文献   

19.
The temperature dependences of the velocity of longitudinal sound and internal friction in the ferromagnetic La0.5Pr0.2Ca0.3MnO3 single crystal with magnetic first-order phase transition were studied. It was found that the sound velocity decreases by ≈20% in transition from the ferromagnetic to paramagnetic state. In the paramagnetic region, the extended temperature hysteresis of the sound velocity and the internal friction was observed. It was shown that La0.5Pr0.2Ca0.3MnO3 has two paramagnetic phases with different sound velocities.  相似文献   

20.
The temperature dependences of the magnetic properties and the magnetoimpedance effect of soft magnetic nanocrystalline Fe73.5Si16.5B6Nb3Cu1 alloy ribbons are studied in the temperature range 24–160°C. A high temperature sensitivity of the impedance and the magnetoimpedance effect of the ribbons are detected in the ac frequency range 0.1–50 MHz. At an ac frequency of 50 MHz, the change in the impedance reaches 0.2 Ω/°C (0.5%/°C) in the temperature range 85–160°C. When the temperature increases, a monotonically decreasing character of the dependence of the magnetoimpedance effect on the applied magnetic field changes into a dependence having an increasing initial segment. The effect of temperature on the magnetoimpedance properties of the soft magnetic nanocrystalline ribbons is shown to result from temperature-induced changes in their electrical conductivity, magnetization, and effective magnetic anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号