首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azulene-1-carbaldehydes which have Me substituents at C(3) and C(8) and no substituent at C(6) react with excess dimethyl acetylenedicarboxylate (ADM) in decalin at 200° to yield exclusively the Diels-Alder adduct at the seven-membered ring (cf. Scheme 3). The corresponding 1-carboxylates behave similarly (Scheme 4). Azulene-1-carbaldehydes which possess no Me substituent at C(8) (e.g. 11 , 12 in Scheme 2) gave no defined products when heated with ADM in decalin. On the other hand, Me substitutents at C(2) may also assist the thermal addition of ADM at the seven-membered ring of azulene-1-carbaldehydes (Scheme 6). However, in these cases the primary tricyclic adducts react with a second molecule of ADM to yield corresponding tetracyclic compounds. The new tricyclic aldehydes 16 and 17 which were obtained in up to 50% yield (Scheme 3) could quantitatively be decarbonylated with [RhCl(PPh3)3] in toluene at 140° to yield a thermally equilibrated mixture of four tricycles (Scheme 8). It was found that the thermal isomerization of these tricycles occur at temperatures as low as 0° and that at temperatures > 40° the thermal equilibrium between the four tricycles is rapidly established via [1,5]-C shifts. The establishment of the equilibrium makes the existence of two further tricycles necessary (cf. Scheme 8). However, in the temperature range of up to 85° these two further tricycles could not be detected by 1H-NMR. When heated in the presence of excess ADM in decalin at 180°, the ‘missing’ tricyclic forms could be evidenced by their tetracyclic trapping products ‘anti’- 45 and ‘anti’- 48 , respectively (Scheme 9).  相似文献   

2.
It is shown that azulene ( 1 ) and dimethyl acetylenedicarboxylate (ADM) in a fourfold molar excess react at 200° in decalin to yield, beside the known heptalene- ( 5 ) and azulene-1,2-dicarboxylates ( 6 ), in an amount of 1.6% tetramethyl (1RS,2RS,5SR,8RS)-tetracyclo[6.2.2.22,501,5]tetradeca-3,6,9,11,13-pentaene-3,4,9,10-tetracarboxylate(‘anti’-7) as a result of a SHOMO (azulene)/LUMO(ADM)-controlled addition of ADM to the seven-membered ring of 1 followed by a Diels-Alder reaction of the so formed tricyclic intermediate 16 (cf. Scheme 3) with a second molecule of ADM. The structure of ‘anti’-7 was confirmed by an X-ray diffraction analysis. Similarly, the thermal reaction of 5,7-dimehtylazulene ( 3 ) with excess ADM in decalin at 120° led to the formation of ca. 1% of ‘anti’- 12 , the 7,12-dimethyl derivative of‘anti’-7, beside of the corresponding heptalene- 10 and azulene-1,2-dicaboxylated (cf Scheme 2). The introduction of Me groups at C(1)and C(3)of azulene ( 1 ) and its 5,7-dimethyl derivative 3 strongly enhance the thermal formation of the corresponding tetracyclic compound. Thus, 1,3-dimethylazulene ( 2 ) in the presence of a sevenfold molar excess of ADM at 200° yielded 20% of ‘anti’- 9 beside an equal amount of dimethyl 3-mehtylazulene-1,2-dicarboxylate ( 8 ;cf. Scheme 1), and 1,3,5,7-tetramethylazulene ( 4 ) with a fourfold molar excess of ADM AT 200° gave a yield of 37% of‘anti’- 15 beside small amount of the corresponding heptalene- 13 and azulene-1,2-dicarboxylates 14 (cf.Scheme 2).  相似文献   

3.
The thermal reaction of 7-isopropyl-1,3,4-trimethylazulene (3-methylguaiazulene; 2 ) with excess dimethyl acetylenedicarboxylate (ADM) in decalin at 200° leads to the formation of the corresponding heptalene- ( 5a/5b and 6a/6b ; cf. Scheme 3) and azulene-1,2-dicarboxylates ( 7 and 8 , respectively). Together with small amounts of a corresponding tetracyclic compound (‘anti’- 13 ) these compounds are obtained via rearrangement (→ 5a/5b and 6a/6b ), retro-Diels-Alder reaction (→ 7 and 8 ), and Diels-Alder reaction with ADM (→ ‘anti’- 13 ) from the two primary tricyclic intermediates ( 14 and 15 ; cf. Scheme 5) which are formed by site-selective addition of ADM to the five-membered ring of 2 . In a competing Diels-Alder reaction, ADM is also added to the seven-membered ring of 2 , leading to the formation of the tricyclic compounds 9 and 10 and of the Diels-Alder adducts ‘anti’- 11 and ‘anti’- 12 , respectively of 9 and of a third tricyclic intermediate 16 which is at 200° in thermal equilibrium with 9 and 10 (cf. Scheme 6). The heptalenedicarboxylates 5a and 5b as well as 6a and 6b are interconverting slowly already at ambient temperature (Scheme 4). The thermal reaction of guaiazulene ( 1 ) with excess ADM in decalin at 190° leads alongside with the known heptalene- ( 3a ) and azulene-1,2-dicarboxylates ( 4 ; cf. Schemes 2 and 7) to the formation of six tetracyclic compounds ‘anti’- 17 to ‘anti’- 21 as well as ‘syn’- 19 and small amounts of a 4:1 mixture of the tricyclic tetracarboxylates 22 and 23 . The structure of the tetracyclic compounds can be traced back by a retro-Diels-Alder reaction to the corresponding structures of tricyclic compounds ( 24--29 ; cf. Scheme 8) which are thermally interconverting by [1,5]-C shifts at 190°. The tricyclic tetracarboxylates 22 and 23 , which are slowly equilibrating already at ambient temperature, are formed by thermal addition of ADM to the seven-membered ring of dimethyl 5-isopropyl-3,8-dimethylazulene-1,2-dicarboxylate ( 7 ; cf. Scheme 10). Azulene 7 which is electronically deactivated by the two MeOCO groups at C(1) and C(2) shows no more thermal reactivity in the presence of ADM at the five-membered ring (cf. Scheme 11). The tricyclic tetracarboxylates 22 and 23 react with excess ADM at 200° in a slow Diels-Alder reaction to form the tetracyclic hexacarboxylates 32 , ‘anti’- 33 , and ‘anti’- 34 (cf. Schemes 10–12 as well as Scheme 13). A structural correlation of the tri- and tetracyclic compounds is only feasible if thermal equilibration via [1,5]-C shifts between all six possible tricyclic tetracarboxylates ( 22, 23 , and 35–38 ; cf. Scheme 13) is assumed. The tetracyclic hexacarboxylates 32 , ‘anti’- 33 , and ‘anti’- 34 seem to arise from the most strained tricyclic intermediates ( 36–38 ) by the Diels-Alder reaction with ADM.  相似文献   

4.
It is shown that the 2-(hydroxymethyl)-1-methylazulenes 6 are being oxidized by activated MnO2 in CH2Cl2 at room temperature to the corresponding azulene-1,2-dicarbaldehydes 7 (Scheme 2). Extension of the MnO2 oxidation reaction to 1-methyl- and/or 3-methyl-substituted azulenes led to the formation of the corresponding azulene-1-carbaldehydes in excellent yields (Scheme 3). The reaction of unsymmetrically substituted 1,3-dimethyl-azulenes (cf. 15 in Scheme 4) with MnO2 shows only little chemoselectivity. However, the observed ratio of the formed constitutionally isometric azulene-1-carbaldehydes is in agreement with the size of the orbital coefficients in the HOMO of the azulenes. The reaction of guaiazulene ( 18 ) with MnO2 in dioxane/H2O at room temperature gave mainly the expected carbaldehyde 19 . However, it was accompanied by the azulene-diones 20 and 21 (Scheme 5). The precursor of the demethylated compound 20 is the carbaldehyde 19 . Similarly, the MnO2 reaction of 7-isopropyl-4-methyalazulene ( 22 ) as well as of 4,6,8-trimethylazulene ( 24 ) led to the formation of a mixture of the corresponding azulene-1,5-diones and azulene-1,7-diones 20 / 23 and 25 / 26 , respectively, in decent yields (Schemes 6 and 7). No MnO2 reaction was observed with 5,7-dimethylazulene.  相似文献   

5.
1,3,4,6,8-Pentamethylazulene ( 9 ), when heated at 100° in supercritical CO2 at 150 bar in the presence of 4 equiv. of dimethyl acetylenedicarboxylate (ADM), led to the formation of 16% of a 1:1 mixture of dimethyl 3,5,6,8,10-pentamethylheptalene-1,2-dicarboxylate 12a ) and its double-bond-shifted isomer 12b as well as 4% of the corresponding azulene-1,2-dicarboxylate 13 (Scheme 4). The formation of the [1 + 2] adduct 11 (cf. Scheme 2) was not observed. Similarly, benz[a]azulene ( 25 ) yielded in supercritical CO2 (150°/170 bar) in the presence of 4 equiv. of ADM dimethyl benzo[d]heptalene-6,7-dicarboxylate ( 29 ; 30%) and dimethyl benzo[a]cyclopent[cd]azulene-1,2-dicarboxylate ( 28 ; 22%; Scheme 5). The reaction of 5,9-diphenylbenz[a]azulene ( 26 ) and ADM in supercritical CO2 (100°/150 bar) gave the corresponding benzo[d]heptalene-6,7-dicarboxylate 31 (22%) and dimethyl 5,9-diphenyl-4b,10-etheno-10H-benz[a]azulene-11,12-dicarboxylate( 30 ; 25%; Scheme 5).  相似文献   

6.
The reaction of highly alkylated azulenes with dimethyl acetylenedicarboxylate (ADM) in decalin or tetralin at 180–200° yields, beside the expected heptalene- and azulene-1,2-dicarboxylates, tetracyclic compounds of type ‘anti’- V and tricyclic compounds of type E (cf. Schemes 2–4 and 8–11). The compounds of type ‘anti’- V represent Diels-Alder adducts of the primary tricyclic intermediates A with ADM. In some cases, the tricyclic compounds of type E also underwent a consecutive Diels-Alder reaction with ADM to yield the tetracyclic compounds of type ‘anti’- or ‘syn’- VI (cf. Schemes 2 and 8–11). The tricyclic compounds of type E , namely 4 and 8 , reversibly rearrange via [1,5]-C shifts to isomeric tricyclic structures (cf. 18 and 19 , respectively, in Scheme 6) already at temperatures > 50°. Photochemically 4 rearranges to a corresponding tetracyclic compound 20 via a di-π-methane reaction. The observed heptalene- and azulene-1,2-dicarboxylates as well as the tetracyclic compounds of type ‘anti’'- V are formed from the primary tricyclic intermediates A via rearrangement (→heptalenedicarboxylates), retro-Diels-Alder reaction (→ azulenedicarboxylates), and Diels-Alder reaction with ADM. The different reaction channels of A are dependent on the substituents. However, the main reaction channel of A is its retro-Diels-Alder reaction to the starting materials (azulene and ADM). The highly reversible Diels-Alder reaction of ADM to the five-membered ring of the azulenes is HOMO(azulene)/LUMO(ADM)-controlled, in contrast to the at 200° irreversible ADM addition to the seven-membered ring of the azulenes to yield the Diels-Alder products of type E . This competing reaction must occur on grounds of orbital-symmetry conservation under SHOMO(azulene)/LUMO(ADM) control (cf. Schemes 20–22). Several X-ray diffraction analyses of the products were performed (cf. Chapt. 4.1).  相似文献   

7.
The thermal reaction of 1-[(E)-styrl]azulenes with dimethyl acetylenedicarboxylate (ADM) in decalin at 190–200° does not lead to the formation fo the corresponding heptalene-1,2-dicarboxylates (Scheme 2). Main products are the corresponding azulene-1,2-dicarboxylates (see 4 and 9 ), accompanied by the benzanellated azulenes trans- 10a and trans- 11 , respectively. The latter compounds are formed by a Diels-Alder reaction of the starting azulenes and ADM, followed by an ene reaction with ADM (cf. Scheme 3). The [RuH2(PPh3)4]-catalyzed reaction of 4,6,8-trimethyl-1-[(E)-4-R-styryl]azulenes (R=H, MeO, Cl; Scheme 4) with ADM in MeCN at 110° yields again the azulene-1,2-dicarboxylates as main products. However, in this case, the corresponding heptalene-1,2-dicarboxylates are also formed in small amounts (3–5%; Scheme 4). The benzanellated azulenes trans- 10a and trans- 10b are also found in small amounts (2–3%) in the reaction mixture. ADM Addition products at C(3) of the azulene ring as well as at C(2) of the styryl moiety are also observed in minor amounts (1–3%). Similar results are obtained in the [RuH2(PPh3)4]-catalyzed reaction of 3-[(E)-styryl]guaiazulene ((E)- 8 ; Scheme 5) with ADM in MeCN. However, in this case, no heptalene formation is observed, and the amount of the ADM-addition products at C(2) of the styryl group is remarkably increased (29%). That the substitutent pattern at the seven-membered ring of (E)- 8 is not responsible for the failure of heptalene formation is demonstrated by the Ru-catalyzed reaction of 7-isopropyl-4-methyl-1-[(E)-styryl]azulene ((E)- 23 ; Scheme 11) with ADM in MeCN, yielding the corresponding heptalene-1,2-dicarboxylate (E)- 26 (10%). Again, the main product is the corresponding azulene-1,2-dicarboxylate 25 (20%). Reaction of 4,6,8-trimethyl-2-[(E)-styryl]azulene ((E)- 27 ; Scheme 12) and ADM yields the heptalene-dicarboxylates (E)- 30A / B , purely thermally in decalin (28%) as well as Ru-catalyzed in MeCN (40%). Whereas only small amounts of the azulene-1,2-dicarboxylate 8 (1 and 5%, respectively) are formed, the corresponding benzanellated azulene trans- 29 ist found to be the second main product (21 and 10%, respectively) under both reaction conditions. The thermal reaction yields also the benzanellated azulene 28 which is not found in the catalyzed variant of the reaction. Heptalene-1,2-dicarboxylates are also formed from 4-[(E)-styryl]azulenes (e.g. (E)- 33 and (E)- 34 ; Scheme 14) and ADM at 180–190° in decalin and at 110° in MeCN by [RuH2(PPh3)4] catalysis. The yields (30%) are much better in the catalyzed reaction. The formation of by-products (e.g. 39–41 ; Scheme 14) in small amounts (0.5–5%) in the Ru-catalyzed reactions allows to understand better the reactivity of zwitterions (e.g. 42 ) and their triyclic follow-up products (e.g. 43 ) built from azulenes and ADM (cf. Scheme 15).  相似文献   

8.
Heptaleno[1,2-c]furan-6-carbaldehydes such as 8 or their thiocarbaldehyde or iminomethyl derivatives easily undergo thermal cyclization, followed by a [1,5]- H shift, to give the corresponding heptalenodifurans, thienoheptalenofurans, as well as furoheptalenopyrroles (cf. Schemes 2 and 3). Generation of the 6-acetyl derivative of 8 from the corresponding secondary alcohol 15 with 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (IBX) at 0° (cf. Scheme 4) leads directly to the formation of the cyclization product 16 which, upon standing at room temperature, undergoes the [1,5]-sigmatropic H-shift to the final difuran 17 . 1-Formylheptalene-4,5-dicarboxylates such as 9 can also be cyclized thermally, followed by the [1,5]-H shift, to the corresponding 8H-heptaleno[1,10-bc]furan-5,6-dicarboxylate 11 . On thiation with Lawesson′s reagent, 9 yields directly the corresponding heptalenothiophene 13 (cf. Scheme 3).  相似文献   

9.
The methylenation reaction of methyl azulene-2-carboxylates (cf. Schemes 1 and 2) with Tebbe's or Takai's reagent is described. When the prescribed amount of Takai's reagent is applied in a four-fold excess, the corresponding cyclopropyl methyl ethers are formed instead of the enol ethers (cf. Schemes 2 and 3). Similarly, methyl benzoate and methyl 2-naphthoate yield, after treatment with Takai's reagent and hydrolysis, the corresponding cyclopropanols 18 and 19 , respectively (Scheme 3). The cyclopropyl methyl ether 4 or cyclopropanol 5 rearrange, on acid catalysis, into the l-(azulen-2-yl)propan-l-one 20 (Scheme 4). whose reduction with Et3SiH in CF3COOH yields the 2-propylazulene 21 .  相似文献   

10.
A number of azulenes 1 , in particular those with π‐substituents at C(6) such as phenyl, 3,5‐dimethylphenyl, and 4‐biphenyl, have been reacted with 3 mol‐equiv. of dimethyl acetylenedicarboxylate (ADM) in MeCN at 110° (cf. Scheme 1). Main products had been, in all cases, the corresponding heptalene‐4,5‐dicarboxylates 2 . However, a whole number of side products, mainly rearranged (1+2)‐adducts with two molecules of ADM, in amounts of 0.2–9% were also isolated and characterized (cf. Scheme 2). The 2a,8a‐dihydro‐3,4‐ethenoazulene‐1,2‐dicarboxylates 14 , formed by energetically favorable ring closure from the solvent‐stabilized zwitterions 15 , resulting from bond heterolysis in the primary cycloadducts 12 (cf. Scheme 3), have been mechanistically identified as the pivotal intermediates responsible for the formation of all side product (cf. Schemes 5, 9, 12, and 13). Deuterium‐labeling experiments were in agreement with the proposed mechanisms, indicating that sigmatropic [1,5s]‐H shifts in 14 (cf. Scheme 6) as well as isoconjugate [1,4s]‐H shifts in resonance‐stabilized zwitterions of type 21 (cf. Scheme 9) are the crucial steps for side‐product formation. It is postulated that a concluding antarafacial 8e‐dyotropic rearrangement is responsible for the appearance of the 2,4a‐dihydrophenanthrene‐tetracarboxylates of type trans‐ 6 (cf. Scheme 9) in the reaction mixtures, which further rearrange thermally by a not fully understood mechanism into the isomeric tetracarboxylates 7 (cf. Schemes 10 and 11). Most surprising is the presence of a small amount (0.3–1%) of the azulene‐4,5,7,8‐tetracarboxylate 9 in the reaction mixture of azulene 1a and ADM. It is proposed that the formation of 9 is the result of a [1,5s]‐C shift in the spiro‐linked intermediates 24 , which, after prototropic shift and take‐up of a third molecule of ADM, disintegrate by a retro‐Diels‐Alder reaction into 9 and the phthalic diesters 30 (cf. Scheme 12). The UV/VIS spectra of the π‐substituted heptalene‐4,5‐dicarboxylates 2d – 2f and their double‐bond shifted (DBS) forms 2d – 2f (cf. Table 4 and Figs. 912) exhibit in comparison with the heptalene‐dicarboxylates 2a and 2′a , carrying a t‐Bu group at C(8), only marginal differences, which are mainly found in the relative intensity and position of heptalene bands II and III .  相似文献   

11.
The reaction of guaiazulene ( 4 ) and dimethyl acetylenedicarboxylate (ADM) in tetralin or toluene, catalyzed by 5 mol-% of trifluoroacetic acid (TFA) at ambient temperature, leads to the formation of the corresponding heptalene-4,5-dicarboxylate 6 and a guaiazulenyl-substituted 2,2a,4a,8b-tetrahydrocyclopent[cd]azulene derivative 7 beside the expected guaiazulenyl-substituted ethenedicarboxylates (E)- 5 and (Z)- 5 as main products (Scheme 2). The structure of 7 was unequivocally established by an X-ray crystal-structure analysis (Fig. 1). Precursor of 7 must be the 2a,4a-dihydrocyclopent[cd]azulene-3,4-dicarboxylate 9 which reacts, under TFA catalysis, with a second molecule of 4 (Scheme 3). No formation of products of type 7 has been observed in the TFA-catalyzed reaction of 4,6,8-trimethyl- and 1,4,6,8-tetramethylazulene ( 13 and 16 , respectively) and ADM (Scheme 4). On the other hand, the TFA-catalyzed reaction of azulene ( 18 ) itself and ADM at ambient temperature gives rise to a whole variety of new products (Scheme 5), the major part of which is derived from dimethyl 2a,4a-dihydrocyclopent[cd]azulene-3,4-dicarboxylate ( 25 ) as the main intermediate (Scheme 6). Nevertheless, for the formation of the 2a,4a,6,8b-tetrahydrocyclobut[a]azulene derivatives (E)- 24a and (E)- 24b , a corresponding 2a,8b-dihydro precursor 29 has to be postulated as crucial intermediate (Scheme 8).  相似文献   

12.
It is shown that azulenes react with dimethyl acetylenedicarboxylate (ADM) in solvents such as toluene, dioxan, or MeCN in the presence of 2 mol-% [RuH2(PPh3)4] already at temperatures as low as 100° and lead to the formation of the corresponding heptalene-1,2-dicarboxylates in excellent yields (Tables 1 and 2). The Ru-catalyzed reaction of ADM with 1-(tert-butyl)-4,6,8-trimethylazulene ( 31 ) takes place even at room temperature, yielding the primary tricyclic addition product 32 and its thermal retro-Diels-Alder product dimethyl 4,6,8-trimethylazulene-1,2-dicarboxylate ( 21 ; Scheme 4). At 100° in MeCN, 32 yields 90% of 21 and only 10% of the corresponding heptalene. These observations demonstrate that [RuH2(PPh3)4] catalyzes the first step of the thermal formation of heptalenes from azulenes and ADM which occurs in apolar solvents such as tetralin or decalin at temperatures > 180° (cf. Scheme 1).  相似文献   

13.
It has been found that dimethyl heptalene-4,5-dicarboxylates, when treated with 4 mol-equiv. of lithiated N,N-dialkylamino methyl sulfones or methyl phenyl sulfone, followed by 4 mol-equiv. of BuLi in THF in the temperature range of ?78 to 20°, give rise to the formation of 3-[(N,N-dialkylamino)sulfonyl]- or 3-(phenylsul-fonyl)benzo[a]heptalene-2,4-diols of. (cf. Scheme 4, and Tables 2 and 3). Accompanying products are 2,4-bis{[(N,N-dialkylamino)sulfonyl]methyl}- or 2,4-bis[(phenylsulfonyl)methyl]-4,10a-dihydro-3H-heptaleno[1,10-bc]furan-3-carboxylates as mixtures of diastereoisomers of. cf. Scheme 4, and (Tables 2 and 3) which are the result of a Michael addition reaction of the lithiated methyl sulfones at C(3) of the heptalene-4,5-dicarboxylates, followed by (sulfonyl)methylation of the methoxycarbonyl group at C(5) and cyclization of. (cf. Scheme 5). It is assumed that the benzo[a]heptalene formation is due to (sulfonyl)methylation of both methoxycarbonyl groups of the heptalene-4,5-dicarboxylates of. (cf. Schemes 6 and 8). The resulting bis-enolates 35 are deprotonated further. The thus formed tris-anions 36 can then cyclize to corresponding tris-anions 37 of cyclopenta[d]heptalenes which, after loss of N,N-dialkylamido sulfite or phenyl sulfinate, undergo a ring-enlargement reaction by 1,2-C migration finally leading to the observed benzo[a]heptalenes of. (cf. Schemes 8 and 9). The structures of the new product types have been finally established by X-ray crystal-structure analyses (cf. Figs. 1 and 2 as well as Exper. Part).  相似文献   

14.
Sodium [1,3-13C2]cyclopentadienide in tetrahydrofuran (THF) has been prepared from the corresponding labelled [13C2]cyclopentadiene which was synthesized from 13CO2 and (chloromethyl)trimethylsilane (cf. Scheme 10) according to an established procedure. It could be shown that the acetate pyrolysis of cis-cyclopentane-1,2-diyl diacetate (cis- 22 ) at 550 ± 5° under reduced pressure (60 Torr) gives five times as much cyclopentadiene as trans- 22 . The reaction of sodium [1,3-13C2]cyclopentadienide with 2,4,6-trimethylpyrylium tetrafluoroborate in THF leads to the formation of the statistically expected 2:2:1 mixture of 4,6,8-trimethyl[1,3a-13C2], -[2,3a-13C2]-, and -[1,3-13C2]azulene ( 20 ; cf. Scheme 7 and Fig. 1). Formylation and reduction of the 2:2:1 mixture [13C2]- 20 results in the formation of a 1:1:1:1:1 mixture of 1,4,6,8-tetramethyl[1,3-13C2]-, -[1,3a-13C2]-, -[2,3a-13C2]-, -[2,8a-13C2]-, and -[3,8a-13C2]azulene ( 5 ; cf. Scheme 8 and Fig. 2). The measured 2J(13C, 13C) values of [13C2]- 20 and [13C2]- 5 are listed in Tables 1 and 2. Thermal reaction of the 1:1:1:1:1 mixture [13C2]- 5 with the four-fold amount of dimethyl acetylenedicarboxylate (ADM) at 200° in tetralin (cf. Scheme 2) gave 5,6,8,10-tetramethyl-[13C2]heptalene-1,2-dicarboxylate ([13C2]- 6a ; 22%), its double-bond-shifted (DBS) isomer [13C2]- 6b (19%), and the corresponding azulene-1,2-dicarboxylate 7 (18%). The isotopically isomeric mixture of [13C2]- 6a showed no 1J(13C,13C) at C(5) (cf. Fig. 3). This finding is in agreement with the fact that the expected primary tricyclic intermediate [7,11-13C2]- 8 exhibits at 200° in tetralin only cleavage of the C(1)? C(10) bond and formation of a C(7)? C(10) bond (cf. Schemes 6 and 9), but no cleavage of the C(1)? C(11) bond and formation of a C(7)? C(11) bond. The limits of detection of the applied method is ≥96% for the observed process, i.e., [1,3a-13C2]- 5 + ADM→ [7,11-13C2]- 8 →[1,6-13C2]- 9 →[5,10a-13C2]- 6a (cf. Scheme 6).  相似文献   

15.
The synthesis of 5,9-diphenylbenz[a]azulene ( 1 ) from 1,3-diphenylcyclopent[a]indene-2,8-dione ( 4 ) and cyclopropene has been re-investigated. The reduction of the decarbonylated cycloadduct 5 with LiAlH4/AlCl3 in Et2O leads not only to the expected 7,10-dihydrobenz[a]azulene 6 , but also to small amounts of the cyclopropa[b]fluorenes exo- 7 and endo- 7 (cf. Scheme 2), the structures of which have been determined by X-ray crystal-structure analysis (cf. Fig. 1). The reaction of 1 with dialkyl acetylenedicarboxylates (ADR) in MeCN at 100° in the presence of 2 mol-% of catalysts such as [RuH2(PPh3)4] results mainly in the formation of the expected 8,12-diphenylbenzo[a]heptalene-6,7-dicarboxylates 3 . A thorough investigation of the reaction mixture of 1 and dimethyl acetylenedicarboxylate (ADM) revealed the presence of a number of intermediates and side products (Scheme 5). Most important was the isolation and identification of the cyclobutene intermediate 9a (cf. Fig. 4), which is formed by a zwitterionic rearrangement of the primary adduct 2a of 1 and ADM and represents the direct precursor of the heptalene-diester 3a . Compounds of type 9a have so far only been postulated as necessary intermediates in the thermal reaction of azulenes and ADR to give corresponding heptalenedicarboxylates. Compound 9a is photochemically unstable and undergoes rearrangement even under the influence of normal laboratory light into a mixture of trans- 10a and cis- 10a (Scheme 8). Both diastereoisomers are also found in the original reaction mixture of 1 and ADM, but not when the reaction is performed under exclusion of light. On heating in MeCN at 100°, or better in DMF at 150°, trans- 10a and cis- 10a undergo rearrangement to the fluoranthene-1,2-dicarboxylate 11a (Scheme 9), which is also present in the original reaction mixture of 1 and ADM. The catalysts do not accelerate the reaction of 1 and ADR, but they lead to better yields of the benzo[a]heptalene-6,7-dicarboxylates 3 , especially in the reaction of 1 with diisopropyl acetylenedicarboxylate (ADiP) (cf. Tables 1 and 2).  相似文献   

16.
Heating of 4,5,6,7,8‐pentamethyl‐2H‐cyclohepta[b]furan‐2‐one ( 1a ) in decalin at temperatures >170° leads to the development of a blue color, typical for azulenes. It belongs, indeed, to two formed azulenes, namely 4,5,6,7,8‐pentamethyl‐2‐(2,3,4,5,6‐pentamethylphenyl)azulene ( 4a ) and 4,5,6,7,8‐pentamethylazulene ( 5a ) (cf. Scheme 2 and Table 1). As a third product, 4,5,6,7‐tetramethyl‐2‐(2,3,4,5,6‐pentamethylphenyl)‐1H‐indene ( 6a ) is also found in the reaction mixture. Neither 4,6,8‐trimethyl‐2H‐cyclohepta[b]furan‐2‐one ( 1b ) nor 2H‐cyclohepta[b]furan‐2‐one ( 1c ) exhibit, on heating, such reactivity. However, heating of mixtures 1a / 1b or 1a / 1c results in the formation of crossed azulenes, namely 4,6,8‐trimethyl‐2‐(2,3,4,5,6‐pentamethylphenyl)azulene ( 4ba ) and 2‐(2,3,4,5,6‐pentamethylphenyl)azulene ( 4ca ), respectively (cf. Scheme 3). The formation of small amounts of 4,6,8‐trimethylazulene ( 5ba ) and azulene ( 5ca ), respectively, besides 1H‐indene 6a is also observed. The observed product types speak for an [8+2]‐cycloaddition reaction between two molecules of 1a or between 1b and 1c , respectively, with 1a , whereby 1a plays in the latter two cases the part of the two‐atom component (cf. Figs. 57 and Schemes 46). Strain release, due to the five adjacent Me groups in 1a , in the [8+2]‐cycloaddition step seems to be the driving force for these transformations (cf. Table 3), which are further promoted by the consecutive loss of two molecules of CO2 and concomitant formation of the 10π‐electron system of the azulenes. The new azulenes react with dimethyl acetylenedicarboxylate (ADM) to form the corresponding dimethyl heptalene‐4,5‐dicarboxylates 20 , 22 , and 24 (cf. Scheme 7), which give thermally or photochemically the corresponding double‐bond‐shifted (DBS) isomers 20′ , 22′ , and 24′ , respectively. The five adjacent Me groups in 20 / 20′ and 24 / 24′ exert a certain buttressing effect, whereby their thermal DBS process is distinctly retarded in comparison to 22 / 22′ , which carry `isolated' Me groups at C(6), C(8), and C(10). This view is supported by X‐ray crystal‐structure analyses of 22 and 24 (cf. Fig. 8 and Table 5).  相似文献   

17.
It is shown that heptaleno[1,2‐c]furans 1 , which are available in two steps from heptalene‐4,5‐dicarboxylates by reduction and oxidative dehydrogenation of the corresponding vicinal dimethanols 2 with MnO2 or IBX (Scheme 4), react thermally in a Diels–Alder‐type [4+2] cycloaddition at the furan ring with a number of electron‐deficient dipolarophiles to yield the corresponding 1,4‐epoxybenzo[d]heptalenes (cf. Schemes 6, 15, 17, and 19). The thermal reaction between dimethyl acetylenedicarboxylate (ADM) and 1 leads, kinetically controlled, via a sterically less‐congested transition state (Fig. 4) to the formation of the (M*)‐configured 1,4‐dihydro‐1,4‐epoxybenzo[a]heptalenes, which undergo a cyclic double‐bond shift to the energetically more‐relaxed benzo[d]heptalenes 4 (Schemes 6 and 7). Most of the latter ones exhibit under thermal conditions epimerization at the axis of chirality, so that the (M*)‐ and (P*)‐stereoisomers are found in reaction mixtures. The (P*)‐configured forms of 4 are favored in thermal equilibration experiments, in agreement with AM1 calculations (Table 1). The relative (P*,1S*,4R*)‐ and (M*,1S*,4R*)‐configuration of the crystalline main stereoisomers of the benzo[d]heptalene‐2,3‐dicarboxylates 4a and 4f , respectively, was unequivocally established by an X‐ray crystal‐structure determination (Figs. 1 and 2). Acid‐induced rearrangement of 4 led to the formation of the corresponding 4‐hydroxybenzo[a]heptalene‐2,3‐dicarboxylates 5 in moderate‐to‐good yields (Schemes 8, 13, and 14). When the aromatization reaction is performed in the presence of trifluoroacetic acid (TFA), trifluoroacetates of type 6 and 13 (Schemes 8, 12, and 13) are also formed via deprotonation of the intermediate tropylium ions of type 7 (Scheme 11). Thermal reaction of 1 with dimethyl maleate gave the 2,3‐exo‐ and 2,3‐endo‐configured dicarboxylates 14 as mixtures of their (P*)‐ and (M*)‐epimers (Scheme 15). Treatment of these forms with lithium di(isopropyl)amide (LDA) at ?70° gave the expected benzo[a]heptalene‐2,3‐dicarboxylates 15 in good yields (Scheme 16). Fumaronitrile reacted thermally also with 1 to the corresponding 2‐exo,3‐endo‐ and 2‐endo,3‐exo‐configured adducts 17 , again as mixtures of their (P*)‐ and (M*)‐epimers (Scheme 17), which smoothly rearranged on heating in dimethoxyethane (DME) in the presence of Cs2CO3 to the benzo[a]heptalene‐2,3‐dicarbonitriles 18 (Scheme 18). Some cursory experiments demonstrated that hex‐3‐yne‐2,5‐dione and (E)/(Z)‐hexa‐3‐ene‐2,5‐dione undergo also the Diels–Alder‐type cycloaddition reaction with 1 (Scheme 19). The mixtures of the stereoisomers of the 2,3‐diacetyl‐1,4‐epoxytetrahydrobenzo[d]heptalenes 22 gave, on treatment with Cs2CO3 in DME at 80°, only mixtures of the regioisomeric inner aldol products 24 and 25 of the intermediately formed benzo[a]heptalenes 23 (Scheme 20).  相似文献   

18.
It is shown that 2-allylated anilines (cf. Schemes 2–4, 7, and 8) on irradiation in protic solvents such as H2O. MeOH, and EtOH in the presence of H2SO4 undergo a novel photosolvolysis reaction to yield specifically trans-2-hydroxy- and trans-2-alkoxy-1-methylindanes. Intermediates are presumably tricyclo[4.3.0.01,8]nona-2,4-dienes formed in an intramolecular [2s + 2s] cycloaddition reaction (cf. Scheme 7). On the other hand, N,N,N-trimethyl-2-(1′-methylallyl)anilinium salts 18 (Scheme 6) and 2-(3′-butenyl)-N,N-dimethylaniline ( 17 ) lose on irradiation in MeOH or H2SO4/MeOH the ammonium group reductively to yield (1-methylallyl)benzene ( 19 ) and 1-methylindane ( 20 ), respectively.  相似文献   

19.
Studies in Stereochemistry XIV. Diels-Alder adducts in the resin series; action of peracids and acid-catalysed ring opening of epoxides The synthesis of Diels-Alder compounds of type 2 with a 17-nor-13(14)-atisène skeleton is described (cf. Schemes 1–3). Depending on the nature and configuration of substituents R1 and R2 on the carbon atoms 15 and 16, an epoxide ( 24–33 ) or a ketone ( 35–38 ) or a mixture of epoxide, ketone and lactone is obtained by the action of p-nitroperbenzoic acid on the double bond of these adducts (cf. Scheme 4). A simplified reaction scheme is suggested to explain the formation of the various products. In an acid-catalysed reaction, the epoxides isomerize mainly into ketones. Nevertherless, in some cases, dienes (e.g. 52 ) or hydroxy-γ-lactones of (13R*, 14S*)-configuration (e.g. 50 ) resulting from the opening of the epoxide ring with retention of configuration were obtained.  相似文献   

20.
A number of aryl 3‐arylprop‐2‐ynoates 3 has been prepared (cf. Table 1 and Schemes 3 – 5). In contrast to aryl prop‐2‐ynoates and but‐2‐ynoates, 3‐arylprop‐2‐ynoates 3 (with the exception of 3b ) do not undergo, by flash vacuum pyrolysis (FVP), rearrangement to corresponding cyclohepta[b]furan‐2(2H)‐ones 2 (cf. Schemes 1 and 2). On melting, however, or in solution at temperatures >150°, the compounds 3 are converted stereospecifically to the dimers 3‐[(Z)‐diarylmethylidene]‐2,3‐dihydrofuran‐2‐ones (Z)‐ 11 and the cyclic anhydrides 12 of 1,4‐diarylnaphthalene‐2,3‐dicarboxylic acids, which also represent dimers of 3 , formed by loss of one molecule of the corresponding phenol from the aryloxy part (cf. Scheme 6). Small amounts of diaryl naphthalene‐2,3‐dicarboxylates 13 accompanied the product types (Z)‐ 11 and 12 , when the thermal transformation of 3 was performed in the molten state or at high concentration of 3 in solution (cf. Tables 2 and 4). The structure of the dihydrofuranone (Z)‐ 11c was established by an X‐ray crystal‐structure analysis (Fig. 1). The structures of the dihydrofuranones 11 and the cyclic anhydrides 12 indicate that the 3‐arylprop‐2‐ynoates 3 , on heating, must undergo an aryl O→C(3) migration leading to a reactive intermediate, which attacks a second molecule of 3 , finally under formation of (Z)‐ 11 or 12 . Formation of the diaryl dicarboxylates 13 , on the other hand, are the result of the well‐known thermal Diels‐Alder‐type dimerization of 3 without rearrangement (cf. Scheme 7). At low concentration of 3 in decalin, the decrease of 3 follows up to ca. 20% conversion first‐order kinetics (cf. Table 5), which is in agreement with a monomolecular rearrangement of 3 . Moreover, heating the highly reactive 2,4,6‐trimethylphenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3f ) in the presence of a twofold molar amount of the much less reactive phenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3g ) led, beside (Z)‐ 11f , to the cross products (Z)‐ 11fg , and, due to subsequent thermal isomerization, (E)‐ 11fg (cf. Scheme 10), the structures of which indicated that they were composed, as expected, of rearranged 3f and structurally unaltered 3g . Finally, thermal transposition of [17O]‐ 3i with the 17O‐label at the aryloxy group gave (Z)‐ and (E)‐[17O2]‐ 11i with the 17O‐label of rearranged [17O]‐ 3i specifically at the oxo group of the two isomeric dihydrofuranones (cf. Scheme 8), indicating a highly ordered cyclic transition state of the aryl O→C(3) migration (cf. Scheme 9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号