首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The 1,3-dipolar cycloadditions of nitrous oxide and substituted alkynes have been studied at the B3LYP/6-31G(d,p) level. The reaction is controlled by LUMO (dipole)--HOMO (dipolarofile) and involves aromatic transition structures. The shape of the potential energy surface and the regioselectivity are not affected by the polarity of the solvents, except in the case of N2O + HC triple bond CSiH3. Different reactivity criteria including FMO coefficients product C, local softness differences Delta, magnetic susceptibility anisotropy chi(anis), and nucleus-independent chemical shifts NICS were used to predict the regioselectivity in all studied cases; the C, Delta criteria turn out to give the best results among them. The aromaticity of the transition structure is not a factor in determining the regiochemistry of the cycloaddtition reactions.  相似文献   

3.
A simple and efficient method for the synthesis of novel spiropyrrolidines has been accomplished by regioselective 1,3‐dipolar cycloaddition reactions of an azomethine ylide generated by thermal‐ring opening of cis‐1‐cyclohexyl‐2‐phenyl‐3‐benzoyl aziridine with various (E)‐3‐arylidene‐4‐chromanones. The synthesis proceeds in good yield to afford novel spiropyrrolidines, 1‐cyclohexyl‐2‐phenyl‐3‐aryl‐5‐benzoylpyrrolidine‐spiro‐[4.3′]4′‐chromanones. The X‐ray crystal structure analysis of one of the products confirms its structure. Molecular orbital calculations were performed to investigate the regioselectivity of the cycloaddition process. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 500–507, 1999  相似文献   

4.
B3LYP/6-311 + G(d,p) has been used to calculate the relative energies and geometrical parameters of the respective reactants, transition states, and cycloadducts from the cycloadditions of azomethine ylide and ethene, (Z)-2-butene, and (E)-2-butene. The half-chair (envelope) transition state structures are consistent with a synchronous concerted cycloaddition mechanism.  相似文献   

5.
1,3-Dipolar cycloaddition of d-glucose-derived azomethine ylides for the synthesis of chiral pyrrolidines accompanied an unexpected 1,2-elimination in the furanose moiety of the products. The C3′ alkoxy/hydroxy group of the furanose moiety was invariably eliminated under the reaction conditions. Also, in contrast to the previous reports, moderate to good exo-diastereoselectivity was observed in the reaction products.  相似文献   

6.
The tropolone subunit of the naturally occurring alkaloid rubrolone aglycon is synthesized via a short reaction sequence starting with a 1,3-dipolar cycloaddition of a pyrylium ylide and indenone, followed by enone oxidation, oxygen-bridge elimination and finally hydroxy group oxidation.  相似文献   

7.
An intramolecular 1,3-dipolar cycloaddition of azomethine ylide, generated in situ via the reaction of C12-glycinate derivative of macrolide with formaldehyde, provided a novel tricyclic macrolide. The high stereoselectivity of this [2+3] reaction was achieved by introducing a suitable directing group at C-6 position of macrolide.  相似文献   

8.
Ornithine methyl ester reacts with aromatic aldehydes to generate bis-Schiff bases, which depending on the structure of the aromatic aldehyde, further undergo an intramolecular cycloaddition through the transient formation of a reactive 1,3-dipole.  相似文献   

9.
10.
Fukuzawa S  Oki H 《Organic letters》2008,10(9):1747-1750
A copper(I)/ClickFerrophos complex catalyzed the asymmetric 1,3-dipolar cycloaddition reaction of methyl N-benzylideneglycinate (the source of azomethine ylides) with vinyl sulfone to give the exo-2,4,5-trisubstituted pyrrolidine in good yield with high enantioselectivity (99% ee). The complex also effectively catalyzed reactions of other dipolarophiles such as acrylates, maleate, and maleimides to give the exo-2,4,5-, and 2,3,4,5-substituted pyrrolidine derivatives with high diastereo- and enantioselectivities.  相似文献   

11.
When 1-phenyl-5-alkylsulfonyltetrazoles are heated with arylhydrazines, the heteroring is cleaved to give nitrogen and 1-arylamino-2-phenyl-3-alkylsulfonylguanidine. According to the proposed scheme, the intermediate product of nucleophilic addition of the arylhydrazine to the tetrazole decomposes to give nitrogen and a 1,3-dipole, which is stabilized by migration of an alkylsulfonyl group.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 549–552, April, 1977.  相似文献   

12.
MNDO-PM3 calculations, carried out on an experimentally determined structure of an intermediate in the cycloaddition of an electrophilic azide and a nucleophilic 1,3-dipolarophile, show that the semiempirical MO scheme models this structure closely. Transition structures for formation of the intermediate and ring closure of the latter are described.  相似文献   

13.
14.
Kumar K  Kapoor R  Kapur A  Ishar MP 《Organic letters》2000,2(14):2023-2025
All-carbon dipole derived by the interaction of triphenylphosphine with allenic ester is able to locate the polarized 2pi-component in 3-formylchromones through a regioselective [2 + 3] addition to the C2-C3 pi-bond, which is followed by deformylation leading to novel 3a,9a-dihydro-1-ethoxycarbonyl-1-cyclopenteno[5, 4-b]benzopyran-4-ones. On the contrary, the dipole recognizes azadiene in 3-(N-aryliminomethyl)chromones through [4 + 3] annulation and initially formed adducts undergo tandem rearrangements to afford novel N-aryl-2, 3-dihydro-4-ethoxycarbonylchromano[2,3-b]azepine-6-ones in good yield.  相似文献   

15.
Sensitized photolysis of iminodiacetic acid methyl ester and maleimides follows a [2 + 3] cycloaddition pathway yielding pyrrolidine derivatives. This is similar to the photochemical reaction between C(60) and amines. A series of pyrrolidine derivatives are prepared by the method including multipyrrolidines from bis- and tris-maleimide starting materials. The yields range from 13% to 85%. The reaction is highly stereoselective. All the isolated products have the 1,3-dimethoxycarbonyl groups in the cis configuration. Various sensitizers may be used with slightly different yields. A plausible mechanism is proposed that involves the singlet oxygen abstraction of two alpha hydrogen atoms from the iminodiacetate and formation of a 1,3-dipole with a structure similar to the classical thermally generated 1,3-dipole.  相似文献   

16.
Zhou Z  Magriotis PA 《Organic letters》2005,7(26):5849-5851
[reaction: see text] A variant of the Huisgen 1,3-dipolar cycloaddition reaction provides a new and convenient functionalization of fullerenes. This method complements the widely used Prato and Bingel-Hirsch reactions. The derived, highly functionalized cyclopentenone and cyclopentenamine fullerene compounds upon hydrolysis are suitable for further functionalization and may serve well in the synthesis of new C60 derivatives possessing uncommon and interesting properties.  相似文献   

17.
A nonstabilized azomethine ylide reacts with a wide range of substituted isatoic anhydrides to afford novel 1,3-benzodiazepin-5-one derivatives, which are generally isolated in high yield. The transformations involve 1,3-dipolar cycloaddition reactions of the ylide with the anhydrides to give transient, and in a representative case spectroscopically observable, oxazolidine intermediates that undergo ring-opening-decarboxylation-ring-closing reaction cascades to yield the 1,3-benzodiazepin-5-one products.  相似文献   

18.
Density functional theory was used to perform a theoretical evaluation of (E)‐1,2‐disubstituted ethylenes as dipolarophiles for the 1,3‐dipolar cycloaddition reaction. The reactivities of electron‐withdrawing and ‐donating substituted ethylenes were examined by estimating their activation energies. The calculated activation energies predicted that the most reactive species is (E)‐1,2‐C2H2(NO)2, whereas the least reactive is (E)‐2‐butene. Namely, it was demonstrated that 16‐electron 1,3‐dipole reactants with more electropositive substituents in terminal positions and ethylenes that possess more strongly electron‐withdrawing substituents facilitate 1,3‐dipolar cycloaddition reactions. All of the theoretical results can be rationalized using the configuration mixing model. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 318–323, 2001  相似文献   

19.
Reports in the literature place the TS for the [1,3]-H shift in propene comparable to or higher in energy than loss of the allylic H. However, [1,3]-H shifts have been repeatedly observed experimentally in enolates. We used GAUSSIAN 98 to examine the origin of this apparent contradiction. We found the first TS for an antarafacial [1,3]-H shift that is clearly lower in energy than simple dissociation of the migrating H. This occurs in the [1,3]-H shift in the acetone enolate. Symmetrical substituents (H, O(-), ethynyl) have TSs with C(2) symmetry, implying that they, and probably most [1,3]-H shift TSs, are antarafacial. Conjugating substituents at C2 lower the energy of [1,3]-H shifts and raise the energy of dissociation by loss of a hydrogen atom from C3, increasing the likelihood of the former type of reaction. Strongly electron-donating and electron-withdrawing substituents are more effective than neutral substituents in lowering the energy requirement of [1,3] shifts. Our best calculations predict that a [1,3]-H shift is lower in energy than dissociation by loss of the H by 27.8 kJ/mol in 2-methyl-1-butene-3-yne, by 36.8 kJ/mol in isoprene, by 55.9 kJ/mol in 2-aminopropene, by 114.5 kJ/mol in the acetone enolate, and by 120.8 kJ/mol in the 1-methylacryloyl cation. Thus, there is a chance of experimental observation of [1,3] shifts in conjugated alkenes and related species.  相似文献   

20.
Aurone-derived azadienes are well-known four-atom synthons for direct [4 + n] cycloadditions owing to their s-cis conformation as well as the thermodynamically favored aromatization nature of these processes. However, distinct from this common reactivity, herein we report an unusual formal migrative annulation with siloxy alkynes initiated by [2 + 2] cycloaddition. Unexpectedly, this process generates benzofuran-fused nitrogen heterocyclic products with formal substituent migration. This observation is rationalized by less common [2 + 2] cycloaddition followed by 4π and 6π electrocyclic events. DFT calculations provided support to the proposed mechanism.

A HNTf2-catalyzed formal migrative cycloaddition of aurone-derived azadienes with siloxy alkynes has been developed to provide access to benzofuran-fused dihydropyridines.

Benzofuran is an important scaffold in biologically important natural molecules and therapeutic agents.1 Among them, benzofuran-fused nitrogen heterocycles are particularly noteworthy owing to their broad spectrum of bioactivities for the treatment of various diseases (Fig. 1).2 Consequently, the development of efficient methods for their assembly has been a topic receiving enthusiastic attention from synthetic chemists.3 Notably, aurone-derived azadienes (e.g., 1) have been extensively employed as precursors toward these skeletons owing to their easy availability and versatile reactivity (Scheme 1a).3 The polarized conjugation system, combined with the preexisting s-cis conformation, has enabled them to serve as ideal annulation partners for the synthesis of nitrogen heterocycles of variable ring sizes. Moreover, the aromatization nature of these processes by forming a benzofuran ring provides additional driving force for them to behave as a perfect four-atom synthon for [4 + n] cycloaddition.3 In contrast, the use of such species as a two-atom partner for [2 + n] cycloaddition has been less developed.3c,k,4 Herein, we report a new migrative annulation leading to benzofuran-fused dihydropyridines of unexpected topology (Scheme 1b, with formal R2 migration), which is initiated by the less common [2 + 2] cycloaddition.Open in a separate windowFig. 1Benzofuran-fused N-heterocyclic natural and bioactive molecules.Open in a separate windowScheme 1Synthesis of benzofuran-fused nitrogen heterocycles.Siloxy alkynes are another important family of building blocks in organic synthesis.5–8 The presence of a highly polarized C–C triple bond enables such molecules to serve as versatile two-carbon cycloaddition partners in various annulation reactions.5–7 In the above context and in continuation of our interest in the study of such electron-rich alkynes,7 we envisioned that the reaction between aurone-derived azadienes 1 and siloxy alkynes 2 should lead to facile electron-inversed [4 + 2] cycloaddition to form benzofuran-fused dihydropyridine products (Scheme 1b). Interestingly, the expected product 3′ from direct [4 + 2] cycloaddition was not observed. Instead, a dihydropyridine product 3 with formal R2 migration was observed. Careful analysis of the mechanism suggested that a [2 + 2] cycloaddition followed by 4π and 6π electrocyclic steps might be responsible for this unexpected product topology (vide infra).We began our investigation with the model substrates 1a and 2a, which were easily prepared in one step from aurone and 1-hexyne, respectively.8 Various Lewis acids were initially examined as potential catalysts for this cycloaddition (Table 1). Unfortunately, common Lewis acids (e.g., TiCl4, BF3·OEt2, Sc(OTf)3, In(OTf)3, and AgOTf) were all ineffective (entries 1–5). Substrate decomposition into an unidentifiable mixture was typically observed. However, further screening indicated that AgNTf2 served as an effective catalyst, leading to benzofuran-fused dihydropyridine 3a in 44% yield (entry 6). Careful analysis by X-ray crystallography confirmed that it was not formed by simple [4 + 2] cycloaddition, as the positions of the phenyl and the siloxy groups were switched (vs. the expected topology). The distinct catalytic performance of AgNTf2 (vs. AgOTf) suggested that the triflimide counter anion Tf2N might be important. However, further screening of various metal triflimide salts did not improve the reaction efficiency (entry 7). Instead, we were delighted to find that the corresponding Brønsted acid HNTf2 served as a better catalyst (57% yield, entry 8). However, triflic acid (TfOH) led to no desired product in spite of complete conversion (entry 9). After considerable efforts in the optimization of other reaction parameters, an improved yield of 75% was obtained with 2.5 mol% of HNTf2 and 2.5 equivalents of 2a at 60 °C (entry 10). Solvent screening indicated that the reaction proceeded faster in DCE with comparable yield (entry 11). However, other solvents were all inferior (entries 12–15). Finally, with a reversed order of addition of the two reactants, the yield was slightly improved (entry 16). We believe that this might be related to the relative decomposition rates of the substrates.Reaction conditionsa
EntryCatalystSolventTime (h)Yield (%)
1TiCl4DCM90
2BF3·OEt2DCM90
3Sc(OTf)3DCM90
4In(OTf)3DCM90
5AgOTfDCM90
6AgNTf2DCM944
7Sc(NTf2)3DCM90
8HNTf2DCM957
9HOTfDCM90
10bHNTf2DCM4275
11bHNTf2DCE1872
12bHNTf2CHCl31820
13bHNTf2THF180
14bHNTf2MeCN180
15bHNTf2EtOAc180
16b,cHNTf2DCE1881 (76)d
Open in a separate windowa 2a (0.06 mmol) was added to the solution of 1a (0.05 mol) and the catalyst (10 mol%). Yield was determined by analysis of the 1H NMR spectrum of the crude mixture using CH2Br2 as an internal standard.bRun with 2.5 mol% catalyst and 2.5 equiv. of 2a at 60 °C.c 1a was added into the solution of 2a and the catalyst.dYield in parentheses was isolated yield.With the optimized conditions, we examined the reaction scope. A range of aurone-derived azadienes with different electron-donating and electron-withdrawing substituents at various positions smoothly participated in this formal migrative cycloaddition process with siloxy alkyne 2a (Scheme 2). The corresponding benzofuran-fused dihydropyridine products 3 were formed with excellent selectivity and moderate to good efficiency. A thiophene unit was also successfully incorporated into the product (3h). However, substitution with a pyridinyl group shut down the reactivity, even with 1.1 equivalents of HNTf2. Other siloxy alkynes bearing different alkyl substituents on the triple bond were also good reaction partners, except that these reactions were more efficient when the catalyst loading was increased to 10 mol% (Table 2). Unfortunately, direct aryl substitution on the alkyne triple bond resulted in essentially no reaction (entry 7). Notably, in spite of the strong acidic conditions, various functional groups, such as TIPS-protected alcohol (3p) and acetal (3c), were tolerated. Moreover, increasing steric hindrance in close proximity to the reaction centers (e.g., tBu group in 3i and 3r) did not obviously affect the reaction efficiency.Scope of siloxyl alkynesa
EntryR 3 Yield (%)
1 3m 66
2 3n 74
3 3o 53b
4 3p 64
5 3q 58
6 3r 62
7 3s <5
Open in a separate windowaConditions: 1d (0.3 mmol), 2 (0.75 mmol), HNTf2 (10 mol%), DCE (3 mL), 60 °C. Isolated yield.bRun with 2.5 mol% of HNTf2.Open in a separate windowScheme 2Scope of aurone-derived azadienes. Conditions: 1 (0.3 mmol), 2a (0.75 mmol), HNTf2 (2.5 mol%), DCE (3.0 mL), 60 °C. Isolated yield.Owing to the electron-rich silyl enol ether motif, the benzofuran-fused dihydropyridine products can be transformed into other related heterocycles upon treatment with electrophiles. For example, deprotection of the silyl group in 3d with TBAF in the presence of water produced ketone 4a (eqn (1)). In the presence of NBS or NCS, the corresponding bromoketone 4b and chloroketone 4c were obtained, respectively (eqn (2)). These reactions were both efficient and highly diastereoselective. The structures of 4b and 4c were also confirmed by X-ray crystallography. Moreover, deprotection of the N-tosyl group with Li/naphthalene followed by air oxidation led to the highly-substituted benzofuran-fused pyridine 5, the core structure of a family of bioactive molecules (eqn (3)).2A possible mechanism is proposed to rationalize the unusual formal migrative process (Scheme 3). The reaction begins with LUMO-lowering protonation of the aurone-derived azadiene 1 by HNTf2.9 Then, the electron-rich alkyne attacks the resulting activated iminium intermediate I, leading to ketenium ion II after intermolecular C–C bond formation. Subsequent intramolecular cyclization from the electron-rich enamine motif to the electrophilic ketenium unit forms oxetene III. The formation of this oxetene can also be considered as a [2 + 2] cycloaddition of the two reactants.6ad,11 Subsequent 4π-electrocyclic opening of oxetene III affords azatriene IV. Further 6π-electrocyclic closing leads to the observed product 3. This observed product topology is fully consistent with this pathway. It is worth noting that the excellent performance with HNTf2 might be attributed to the low nucleophilicity and good compatibility of its counter anion with the highly electrophilic cationic intermediates (e.g., ketenium II) in this process. We have also carried out DFT studies. The results indicated that the proposed pathway is energetically viable and consistent with the experimental data (Scheme 3 and Fig. S1). Moreover, some other possible pathways that engage the nitrogen atom in intermediate II to directly attack the ketenium in a [4 + 2] mode were explored. However, no reasonable transition state could be located (Fig. S2). Thus, the origin of preference toward [2 + 2] cycloaddition remains unclear.Open in a separate windowScheme 3Proposed mechanism and free energies (in kcal mol−1) computed at the M06-2X(D3)/6-311G(d,p)-SMD//M06-2X/6-31G(d) level of theory.We also prepared TIPSNTf2 and examined its catalytic activity in this reaction since it is known that such a Lewis acid might be generated in situ.10 However, no reaction was observed when TIPSNTf2 was used in place of HNTf2, suggesting that it is unlikely the actual catalyst. Finally, in order to probe the nature of the substituent migration (intermolecular vs. intramolecular), we carried out a cross-over experiment (Scheme 4). Under the standard conditions, the reaction using a 1 : 1 mixture of 1d and 1k led to exclusive formation of 3d and 3k, without detection of any cross-over products. This result is consistent with the proposed intramolecular migration pathway.Open in a separate windowScheme 4Cross-over experiment.In conclusion, we have discovered an unusual formal migrative cycloaddition of aurone-derived azadienes with siloxy alkynes. In the presence of a catalytic amount of HNTf2, this reaction provided expedient access to a range of useful benzofuran-fused dihydropyridine products with unexpected topology, distinct from normal [4 + 2] cycloaddition. Although aurone-derived azadienes are ideal four-atom synthons for direct [4 + n] cycloaddition, the present process is initiated by less common [2 + 2] cycloaddition, which is critical for the observed product formation. Subsequent electrocyclic opening and cyclization steps provide a reasonable rationale. The heterocyclic products generated from this process are precursors toward other useful structures, such as benzofuran-fused pyridines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号