首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acylation of 4-carbamoylimidazolium-5-olate ( 2 ) with a variety of acid chlorides produced 4(5)-carbamoyl-1H-imidazol-5-(4)yl acid carboxylates ( 3a-j ). Treatment of esters 3a,c with sodium hydroxide gave imides, 4a,c . Methylation of 3a and 2 with diazomethane gave the N-3 methyl derivative ( 6 ) and a mixture of the N-3, O-dimethyl derivative ( 9 ), the N-1, N-3-dimethyl derivative ( 10 ) and the O-methyl derivative ( 11 ), respectively. 5-Carbamoyl-1-methylimidazolium-4-olate ( 7 ) and its 4-carbamoyl isomer ( 16 ) were prepared from 2-aminopropanediamides 8 and 15 , respectively. Treatment of the imidazolium compound ( 10 ) with aqueous potassium hydroxide gave the recyclized product, 1-methyl-5-methylcarbamoylimidazolium 4-olate ( 18 ). Methyl derivatives 6, 7 , and 9 except 16 demonstrated the complete lack of antitumor activity against Lewis lung carcinoma or sarcoma 180 in mice.  相似文献   

2.
Reaction of 2-nitrobenzyl iodide with 1H-imidazole, in the presence of potassium tert-butoxide and 18-crown-6, gave 1-(2-nitrobenzyl)-1H-imidazole. Trichloroacetylation of this compound furnished trichloroacet-ylimidazole 8 , which on treatment with sodium ethoxide was transformed into the corresponding ethoxycarbonyl derivative 9 . Catalytic reduction of the nitro group to the amino group yielded 10 , which was then cyclized to 10,11-dihydro-11-oxo-5H-imidazo[2,1-c][1,4]benzodiazepine 11. Treatment of this lactam with di-4-morpholinylphosphinic chloride followed by reaction of the intermediate 12 with formylhydrazine gave the title compound or its 1-derivatives when acetylhydrazine or isonicotinoylhydrazine were used instead of formylhydrazine.  相似文献   

3.
Several chemical reactions were carried out on 3‐(benzothiazol‐2‐yl‐hydrazono)‐1,3‐dihydro‐indol‐2‐one ( 2 ). 3‐(Benzothiazol‐2‐yl‐hydrazono)‐1‐alkyl‐1,3‐dihydro‐indol‐2‐one 3a , 3b , 3c have been achieved. Reaction of compound 2 with ethyl bromoacetate in the presence of K2CO3 resulted the uncyclized product 4 . Reaction of compound 2 with benzoyl chloride afforded dibenzoyl derivative 5 . Compound 2 was smoothly acetylated by acetic anhydride in pyridine to give diacetyl derivative 6b . Moreover, when compound 4 reacted with methyl hydrazine, it yielded dihydrazide derivative 7 , whereas the hydrazinolysis of this compound with hydrazine hydrate gave the monohydrazide derivative 8 . {N‐(Benzothiazol‐2‐yl‐N′‐(3‐oxo‐3,4‐dihydro‐2H‐1,2,4‐triaza‐fluoren‐9‐ylidene)hydrazino]‐acetic acid ethyl ester ( 9 ) was prepared by ring closure of compound 8 by the action of glacial acetic acid. In addition, the reaction of 2‐hydrazinobenzothiazole ( 1 ) with d ‐glucose and d ‐arabinose in the presence of acetic acid yielded the hydrazones 10a , 10b , respectively. Acetylation of compound 10b gave compound 11b . On the other hand, compound 13 was obtained by the reaction of compound 1 with gama‐d ‐galactolactone ( 12 ). Acetylation of compound 13 with acetic anhydride in pyridin gave the corresponding N1‐acetyl‐N2‐(benzothiazolyl)‐2‐yl)‐2,3,4,5,6‐penta‐O‐acetyl‐d ‐galacto‐hydrazide ( 14 ). Better yields and shorter reaction times were achieved using ultrasound irradiation. The structural investigation of the new compounds is based on chemical and spectroscopic evidence. Some selected derivatives were studied for their antimicrobial and antiviral activities.  相似文献   

4.
Acylation of 4-alkoxycarbonyl-3-amino-6-hydroxy-2H-1-benzopyran-2-one derivatives 3 and 4 gave under mild conditions the O-substituted derivatives 5–10, N,O -disubstituted derivative 11 and N,N-disubstituted derivative 12 . The compound 4 was transformed with benzoyl chloride under more drastic conditions into 13 , a derivative of a new heterocyclic system 2-benzopyrano[3,4-d][1,3]oxazine. The derivatives of 1-benzopyrano-[3,4-d]pyrimidine 19 and 20 were prepared either from 3 and 4 through the corresponding N-heteroarylformamidines 14 and 15 and N-heteroarylformamide oximes 17 and 18 or by cyclization of thiourea derivative 20 .  相似文献   

5.
Cyclodehydrogenation of the benzalhydrazino derivatives 5 and 6 gave 6-cyano-7-(4-methoxyphenyl)- 2-phenyl-5-oxo-1,2,4-triazolo[1,5-a]pyrimidine (8) and 6-cyano-7-(4-methoxyphenyl)-4-methyl-2-phenyl- 5-oxo-1,2,4-triazolo[1,5-a]pyrimidine (9) respectively. Melhylation, acetylation and benzylation of 8 gave the corresponding N-methyl, acetyl and benzyl derivatives 10-12 . Methylation of 5 with dimethylsulfate gave 2-benzalhydrazino-5-cyano-3-methyl-6-(4-methoxyphenyl)-3,4-dihydropyrimidin-4-one (6) , of which the reaction with acetic anhydride in pyridine afforded the N-acetylbenzalhydrazino derivative 15 . The latter was also prepared from acetylation of 5 followed by medthylation with iodomethane. Acetylation of 5 with boiling acetic anhydride afforded the diacetyl derivative 16 , whereas its benzylation gave the mono-N-benzyl derivative 14 .  相似文献   

6.
The reactions of the tetracyclic ketone, 1,2-dihydro-11-(trifluoromethyl)-3H,7H-quino[8,1-cd] [1,5]benzoxazepin-3-one ( 1 ) with pyrrolidine, piperazine, N-methylpiperazine, and dimethyl-amine gave the enamines 2, 13, 11 , and 4 . These were reduced with sodium borohydride to the corresponding 3-amino derivatives 3, 14, 12 , and 5 . The 3-(2-hydroxyethylpiperazino) derivative ( 8 ) was obtained from the 3-chloro compound ( 7 ); 7 was prepared from the carbinol ( 6 ). The 3-NH2 derivative ( 10 ) was obtained by reduction of the oxime ( 9 ). In 3, 5, 6, 7, 8, 10, 12 , and 14 , the -OCH2 protons were non-equivalent, since in the pmr spectrum of each of these compounds there was seen a symmetrical, perturbed AB quartet, with a common JAB of 12 cps, that must be attributed to geminal interproton coupling. This phenomenon had not previously been observed with 1, 9 , or the enamines, since in their pmr spectra, the -OCH2 protons had invariably been seen as singlets.  相似文献   

7.
The title compound, a potential anthelmintic agent, was prepared in seven steps from 5-hydroxy-2-picoline. The intermediate 5-(N,-phenylbenzamido)-2-picoline was prepared by a facile Chapman rearrangement of the corresponding benzimidoyl ester. Oxidation and Curtius rearrangement of the substituted picoline gave 5-(N-phenylbenzamido)-2-aminopyridine which underwent ring closure and debenzoylation to furnish methyl 6-phenylaminoimidazo[1,2-α]pyridine-2-carbamate. Fries rearrangement of the penultimate N-benzoyl derivative gave a 6-(p-benzoylphenylamino)imidazo[1,2-α]pyridine derivative, whose structure was confirmed by cmr study. The title compound lacked significant anthelmintic activity.  相似文献   

8.
Difuro[3,2-c:3′,2′-e]pyridine 1 , a new tricyclic heteroaromatic, has been prepared for the first time. Bromination of 1 with molecular bromine gave 3-bromo 7 , 8-bromo 7′ and 3,8-dibromo derivative 8 ; nitration with fuming nitric acid yielded 2-nitro compound 9 , while nitration with a mixture of fuming nitric acid and sulfuric acid gave 2,7-dinitro derivative 10 ; formylation with n-butyllithium and dimethylformamide gave 2-formyl 11 , 7-formyl 11′ , and 2,7-diformyl compound 12. The N-oxide 14 of 1 afforded 4-cyano compound 15 by cyanation with trimethylsilyl cyanide, 4-chloro compound 16 by chlorination with phosphorus oxychloride, and 4-acetoxyl compound 17 by acetoxylation with acetic anhydride.  相似文献   

9.
This paper describes the synthesis and chemical properties of some 2- and 3-substituted furo[2,3-b]pyridines. Reaction of ethyl 2-chloronicotinate 1 with sodium ethoxycarbonylmethoxide or 1-ethoxycarbonyl-1-ethoxide gave β-keto ester 2 or ketone 5 , respectively. Ketonic hydrolysis of 2 afforded ketone 3, from which furo[2,3-b]pyridine 4 was obtained by the method of Sliwa. While, 2-methyl derivative 7 was prepared from 5 by reduction, O-acetylation and the subsequent pyrolysis. Reaction of ketone 3 with methyllithium gave tertiary alcohol 8 which was O-acetylated and pyrolyzed to give 3-methyl derivative 9 . Formylation of 4 , via lithio intermediate, with DMF yielded 2-formyl derivative 10 , from which 7 , was obtained by Wolff-Kishner reduction. Dehydration of the oxime 11 of 10 gave 2-cyano derivative 12 , which was hydrolyzed to give 2-carboxylic acid 13 . Reaction of 3-bromo compound 14 with copper(I) cyanide gave 3-cyano derivative 15 . Alkaline hydrolysis of 15 afforded compound 16 and 17 , while acidic hydrolysis gave carboxamide 18 . Reduction of 15 with DIBAL-H afforded 3-formyl derivative 19 . Wolff-Kishner reduction of 19 gave no reduction product 9 but hydrazone 20 . Reduction of tosylhydrazone 21 with sodium borohydride in methanol afforded 3-methoxymethylfuro[2,3-b]pyridine 22 .  相似文献   

10.
A method for the synthesis of the title compound 3 consisted of an intramolecular cyclization in a stannic chloride catalyzed Friedel-Crafts reaction of N-(2-methylthiophenyl)-5-oxoproline chloride 10 , prepared by chlorination of the corresponding acid 9 obtained by hydrolysis of its ethyl ester 8 . Condensation of 2-methylthioaniline 4 with diethyl bromomalonate 5 afforded diethyl 2-methylthioanilinomalonate 6 which gave 8 either directly by reaction with ethyl acrylate or by alkylation with ethyl β-bromopropionate or ethyl acrylate and cyclization of resulting triethyl 2-(2-methylthio)anilino-2-carboxyglutarate 7 . This method was not convenient because of the poor yield of 3 (14%). On the other hand, cyclization of N-(2-mercaptophenyl)-5-oxoproline 14 with DCC and DMAP provided 3 in 45% yield. Oxidation with m-CPBA of the esters 11 and 8 , demethylation via the Pummerer rearrangement of the respective sulphoxides 12 and 17 with TFAA and oxidation with iodine of resulting N-(2-mercap-tophenyl)-5-oxoproline esters 13 and 18 gave the corresponding disulphides 16 and 19 . Hydrolysis of these latter compounds and reduction of the resulting bis[2-[2-(hydroxycarbonyl)-5-oxo-1-pyrrolidinyl]phenyl] disulphide 15 with sodium dithionite afforded the required 14 . Deprotection of t-butyl ester 13 with TFA at 55° to obtain 14 led to 3 in 42% yield. Finally the Pummerer rearrangement of N-(2-methylsulphinylphenyl)-5-oxo-proline 20 yielded the mixture of 14 and 15 .  相似文献   

11.
Bromination of 2-methylfuropyridines 1a-d-Me gave the 3-bromo derivatives 2a-d , while the 2-cyano compounds 1a-d-CN resulted in the recovery of the starting compounds. Nitration of 1a-d-Me and 1a-d-CN did not yield the corresponding nitro derivative, except for 1-c-CN giving 3-nitro derivative 3c in 7% yield. N-Oxidation of 1a-d-Me and 1b-d-CN with m-chloroperbenzoic acid yielded the N-oxides 4a-d-Me and 4b-d-CN , whereas 1a-CN did not afford the N-oxide. Cyanation of N-oxides 4a-d-Me and 4b-d-CN with trimethylsilyl cyanide gave the corresponding α-cyanopyridine compounds 5a-d-Me and 5b-d-CN . Chlorination of 4a-d-Me and 4b-d-CN with phosphorus oxychloride also gave the α-chloropyridine compounds 6b-d-Me and 6b-d-CN , accompanying formation of γ-chloropyridine 6a-Me, 6′b-Me and 6′b-CN , β-chloropyridine 6′b-CN , and α'-chloropyridine derivatives 6′c-Me and 6′c-CN . Acetoxylation of 4a-d-Me and 4b-d-CN with acetic anhydride yielded α-acetoxypyridine compounds 7a-Me and 7b-CN , pyridone compounds 11d-Me, 11c-CN and 11d-CN , 3-acetoxy compounds 8, 9b, 9c , and 2-acetoxymethyl derivatives 10b and 10c.  相似文献   

12.
Reaction of 1-(3-bromo-2-oxopropyl)pyridazin-6-ones 1 and 2 with sodium azide at room temperature gave the corresponding 1-(3-azido-2-oxopropyl)pyridazin-6-ones 3 and 4 , whereas reaction of 1-(1-bromo-2-oxo-propyl)pyridazin-6-ones 5 and 6 with excess sodium azide afforded 4-azido-5-chloropyridazin-6-one 7 and 4,5-diazido-3-nitropyridazin-6-one 8 by dealkylation. Some 1-(2-hydroxypropyl)pyridazin-6-ones 9, 10, 11 were synthesized from the corresponding 1-(2-oxopropyl) derivatives 1, 2, 3 . 4,5-Dichloro-1-(2,3-dihydroxypropyl)-pyridazin-6-one 13 was also prepared from compound 9 via the corresponding 2,3-epoxypropyl derivative 12 . Treatment of compound 5 with thiourea gave 4,5-dichloro-1-(2-amino-4-methylthiazol-5-yl)pyridazin-6-one 14 . Reaction of compounds 1 and 2 with thiourea at 20° afforded the corresponding 3-formamidinylthio-2-oxo-propyl derivatives 15 and 16 , whereas treatment of compound 1 with thiourea at 45° gave 4,5-dichloro-1-[(2-aminothiazol-5-yl)methyl]pyridazin-6-one 17 . Compound 17 was also prepared from compound 15 by refluxing in ethanol.  相似文献   

13.
2-Amino-9-β-D-ribofuranosylpurine-2-sulfonamide (2-sulfamoyladenosine, 4 ), a congener of sulfonosine ( 3 ), was synthesized by four different routes. Acid catalyzed fusion of 6-chloropurine-2-sulfonyl fluoride ( 5 ) with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose ( 8 ) gave a good yield of 6-chloro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine-2-sulfonyl fluoride ( 9 ). Ammonolysis of 9 furnished 4 . Lewis acid catalyzed glycosylation of the trimethylsilyl derivative of either 6-chloropurine-2-sulfonamide ( 6 ) or 6-aminopurine-2-sulfonamide ( 7 ) with 8 gave the corresponding N9-glycosylated products, 10 and 11 , respectively, which on ammonolysis gave 4 . Amination of 2-thioadenosine ( 12 ) with chloramine solution gave the sulfenamide derivative 13 , which on subsequent oxidation with m-chloroperoxybenzoic acid furnished an alternate route to 4 . The structure of 4 was established by single-crystal X-ray diffraction studies. 2-Sulfamoyladenosine ( 4 ) is devoid of significant inhibitory activity against L1210 leukemia in mice.  相似文献   

14.
3-Cyano-5-ethoxycarbonyl-6-methyl-4-(2′-thienyl)-pyridine-2(1H)-thione ( 1 ) is synthesized and reacted with chloroacetamide or chloroacetonitrile to give 3-amino-5-ethoxycarbonyl-6-methyl-4(2′-thienyl)-thieno[2,3-b]pyridine-2-carboxamide 3a or its 2-carbonitrile analog 3b , respectively. Cyclocondensation of 3a with triethylorthoformate produced the corresponding pyridothienopyrimidineone 4 , which on heating with phosphorus oxychloride gave 4-chloropyrimidine derivative 5 . Compound 5 was used as key intermediate for synthesizing compounds 6 , 9 , 10 , 11 , and 12 upon treatment with some nucleophilic reagents such as thiourea, 5-phenyl-s-triazole-3(1H)-thione, piperidine, morpholine, or hydrazine hydrate, respectively. Reaction of pyridothienopyrimidinethione 6 with N-(4-tolyl)-2-chloroacetamide or ethyl bromoacetate afforded the corresponding S-substituted methylsulfanylpyrimidines 7 or 8 . The condensation of 3b with triethylorthoformate gave azomethine derivative 13 , which was reacted with hydrazine hydrate to give ethyl 3-amino-3,4-dihydro-4-imino-7-methyl-9-(2′-thienyl)pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine-8-carboxylate ( 14 ). Compounds 12 and 14 were used as precursors for synthesizing other new thienylpyridothienopyrimidines as well as isomeric thienyl-s-triazolopyridothieno- pyrimidines. All synthesized compounds were characterized by elemental and spectral analyses such as IR, 1H NMR, and 13C NMR. In addition, majority of synthesized compounds were tested for their antifungal activity against five strains of fungi. Moreover, compounds 3a , 5 , 6 , 8 , and 22 were screened for their anticancer activity against HEPG-2 and MCF-7 cell lines.  相似文献   

15.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

16.
By reaction of 6-[N-(2-hydroxyethyl)-N-methyl]aminopurine ( 2a ) and of the corresponding 3-hydroxypropyl derivative 2b with thionyl chloride a bridge to N(1) is formed yielding 5 and 6 , respectively, whereas from 6-[N-(4-hydroxybutyl)-N-methyl]aminopurine ( 2c ) the 4-chlorobutyl compound 4 is obtained, which cyclizes in alkaline medium to the C(6)-N(7) bridged compound 7 . A related cyclization to 11a–11f is observed when 6-chloropurines are reacted with 3-alkyl-1,3-oxazolidines or 3-methyl-1,3-thiazolidine.  相似文献   

17.
Thuiation of the benzoate and acetate esters of 3-(2-hydroxyethyl)-2-benzothiazolinone (Ig) gave the corresponding thiones. The benzoate was then deblocked to yield 3-(2-hydroxyethyl)-2-benzothiazolinethione (Ik), a compound not accessible by direct addition or substitution. Attempts to introduce a chlorine (or bromine) atom in place of the hydroxy 1 group in the latter compound or its S-isomer, 2-(2-hydroxyethylthio)benzothiazole (11a), gave 2,3-dihydrothiazolo-[2,3-b ] benzothiazolium chloride (or bromide) (IIIa or b). The latter compound undergoes dihydrothiazolo ring opening when treated with sodium hydroxide or sodium sulfide to give bis[2-(2-benzolhiazolinon-,3-yl)ethyl]disulfide (IVc) or bis[2-(2-benzothiazolinethion-3-yl)ethyl] disulfide (lVb),respectively. 2-Benzothiazolinethione reacted with ethylenimine and with N-phenylethylenimine to give S-substituted derivatives. Addition to vinyl n-butyl ether gave the expected N-substituted derivative, which was found to undergo removal of the butyoxyethyl group when subjected to conventional conditions for ether cleavage.  相似文献   

18.
6-Cyanomethylene ( 2 ), which was prepared via 1 by substitution with malononitrile, has been catalytically hydrogenated to the α-(aminomethylene)-9-(methoxymethyl)-9H-purine-6-acetonitrile ( 3 ) in good yield using N,N-dimethylformamide-benzene as solvent over Pd-C under medium pressure. Intermediate 3 was derived to aldehyde 5 by hydrolysis with acid or base. Substitution of 3 with amines gave the corresponding alkylamines 6 and 7 . Reaction of 3 with hydrazine and acetamidine hydrochloride gave pyrazole derivative 8 and pyrimidine derivative 9 , respectively.  相似文献   

19.
To search for novel antihypertensive heterocycles in the condensed quinazoline series, two representative compounds were synthesized via a suitable reaction sequences. Treating anthranilonitrile with allyl isocyanate gave 2-(allylureido)benzonitrile ( 10 ) in a quantitative yield. Compound 10 was cyclized to 3-allylquinazoline-2(1H, 4(3H)-dione ( 11 ). Bromination of 11 in carbon tetrachloride converted it into the corresponding 3-(2,3-dibromopropyl) derivative ( 12 ) in 92% yield. Ring closure of 12 was effected by the action of alkali to afford 2-bromomethyl-2,3-dihydro-5H-oxazolo[2,3-b]quinazolin-5-one ( 13 ). The title compound, 2-(4-benzylpiperazin-1-ylmethyl)-2,3-dihydro-5H-oxazolo[2,3-b]quinazolin-5-one ( 7 ) could be obtained by a reaction of either 12 or 13 with 1-benzylpiperazine respectively. Starting from the readily available 3-allyl-2H-thioxoquinazolin-4(3H)-one ( 16 ) via the analogous reactions gave the 2-bromomethyl-2,3-dihydro-5H-thiazolo[2,3-b]-quinazolin-5-one ( 19 ) in good yield. However, the reaction of 19 with 1-benzylpiperazine provided another target compound, 2-(4-benzylpiperazin-1-ylmethyl)-2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-one ( 8 ) only in poor yield (8%). As major product, the dehydrobrominated compound, 2-methylene-2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-one ( 22 ) was isolated. A preliminary pharmacological evaluation revealed that both compounds 7 and 8 are devoid of the antihypertensive activity.  相似文献   

20.
The synthesis of a 1,4-disubstituted dihydropyridine, 1-(E-1[125I]iodo-1-penten-5-yl)-4-(β-N-acetylaminoethyl)-1,4-dihydropyridine ([125I] 10 ), is described. Acetylation of 4-(β-aminoethylpyridine) with acetic anhydride followed by condensation with E-1-borono-5-iodo-1-pentene ( 7 ) gave 1-(E-1-borono-1-penten-5-yl)-4-(β-N-acetylaminoethyl)pyridinium iodide ( 8 ). Chloramine-T and sodium iodide iodination of 8 gave the corresponding E-1-iodo compound 9 which was reduced with sodium borohydride to furnish 1-(E-1-iodo-1-penten-5-yl)-4-(β-N-acetylaminoethyl)-1,4-dihydropyridine ( 10 ). The corresponding radioiodinated compound was prepared similarly using Na[125I]. The tissue distribution studies in rats indicate that [125I] 10 crosses the blood brain barrier (0.49% dose/g in the brain) but gradually washes out from the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号